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6.11 Exercises

1. Show that the cubic Taylor approximation of
√

1 + x around 0 is

√
1 + x ≈ 1 +

x

2
− x2

8
+

x3

16
.

2. Use the Taylor series expansion of the function ex to find the value of e0.25

with six decimal digits accuracy.

3. Show that

e−x − 1

1 + x
= O(x2), as x → 0.

4. (i) Let g(x) be an infinitely differentiable function. Find the linear and
quadratic Taylor approximations of eg(x) around the point 0.

(ii) Use the result above to compute the quadratic Taylor approximation

around 0 of e(x+1)2.

(iii) Compute the quadratic Taylor approximation around 0 of e(x+1)2 by using

Taylor approximations of ex and ex2

.

5. Find the Taylor series expansion of the functions

ln(1− x2) and
1

1− x2

around the point 0, using the Taylor series expansions (6.48) and (6.49) of
ln(1− x) and 1

1−x around 0.

6. Prove that

(
1 +

1

x

)x+1
2− 1

12x

< e <
(
1 +

1

x

)x+1
2

, ∀ x ≥ 1.

Use the fact that
(
1 + 1

x

)x
< e <

(
1 + 1

x

)x+1
, for all x ≥ 1.

7. Compute the Taylor series expansion of

ln
(

1 + x

1− x

)

around the point 0, and find its radius of convergence.
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8. (i) Find the radius of convergence of the series

1 +
x4

2!
+

x8

4!
+

x12

6!
+ . . . (6.127)

(ii) Show that the series from (6.127) is the Taylor series expansion of the
function

ex2

+ e−x2

2
.

9. Let

T (x) =

∞∑
k=1

(−1)k+1 xk

k

be the Taylor series expansion of f(x) = ln (1 + x). In section 6.3.1, we showed
that T (x) = f(x) if |x| ≤ 1

2 . In this exercise, we show that T (x) = f(x) for
all x such that |x| < 1.

Let Pn(x) be the Taylor polynomial of degree n corresponding to f(x). Since
T (x) = limn→∞ Pn(x), it follows that f(x) = T (x) for all |x| < 1 if and only if

lim
n→∞

|f(x)− Pn(x)| = 0, ∀ |x| < 1. (6.128)

(i) Use (6.51) and the integral formula (6.4) for the Taylor approximation error
to show that, for any x,

f(x)− Pn(x) =

∫ x

0

(−1)n+2 (x− t)n

(1 + t)n+1
dt.

(ii) Show that, for any 0 ≤ x < 1,

|f(x)− Pn(x)| ≤
∫ x

0

(
x− t

1 + t

)n 1

1 + t
dt ≤ xn ln(1 + x). (6.129)

Use (6.129) to prove that (6.128) holds for all x such that 0 ≤ x < 1.

(iii) Assume that −1 < x ≤ 0. Let s = −x. Show that

|f(x)− Pn(x)| =

∫ s

0

(s− z)n

(1− z)n+1
dz.

Note that s−z
1−z ≤ s, for all 0 ≤ z ≤ s < 1, and obtain that

|f(x)− Pn(x)| ≤ sn| ln(1− s)| = (−x)n| ln(1 + x)|.
Conclude that (6.128) holds true for all x such that −1 < x ≤ 0.
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10. The goal of this exercise is to compute

∫ 1

0

ln(1− x) ln(x) dx. (6.130)

(i) Show that

lim
x↘0

(ln(1− x) ln(x)) = lim
x↗1

(ln(1− x) ln(x)) = 0,

and conclude that the integral (6.130) can be regarded as a definite integral.

(ii) Use the Taylor series expansion of ln(1− x) for |x| < 1 to show that

∫ 1

0

ln(1− x) ln(x) dx = −
∞∑

n=1

1

n

∫ 1

0

xn ln(x) dx.

(iii) Prove that

∫ 1

0

ln(1− x) ln(x) dx =

∞∑
k=1

1

n(n + 1)2
.

(iv) Use that fact that
∞∑

k=1

1

n2
=

π2

6

to obtain that ∫ 1

0

ln(1− x) ln(x) dx = 2− π2

6
.

11. In the Cox-Ross-Rubinstein parametrization for a binomial tree, the up and
down factors u and d, and the risk–neutral probability p of the price going up
during one time step are

u = A +
√

A2 − 1; (6.131)

d = A−
√

A2 − 1; (6.132)

p =
erδt − d

u− d
, (6.133)

where

A =
1

2

(
e−rδt + e(r+σ2)δt

)
.
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Use Taylor expansions to show that, for a small time step δt, u, d and p may
be approximated by

u = eσ
√

δt; (6.134)

d = e−σ
√

δt; (6.135)

p =
1

2
+

1

2

(
r

σ
− σ

2

) √
δt. (6.136)

In other words, write the Taylor expansions for (6.131–6.133) and for (6.134–
6.136) and show that they are identical if all the terms of order O(δt) and
smaller are neglected.

12. (i) What is the approximate value Papprox,r=0,q=0 of an at-the-money put option
on a non–dividend–paying underlying asset with spot price S = 60, volatility
σ = 0.25, and maturity T = 1 year, if the constant risk–free interest rate is
r = 0?

(ii) Compute the Black–Scholes value PBS,r=0,q=0 of the put option, and esti-
mate the relative approximate error

|PBS,r=0,q=0 − Papprox,r=0,q=0|
PBS,r=0,q=0

.

(iii) Assume that r = 0.06 and q = 0.03. Use formula (6.103) to compute
Papprox,r=0.06,q=0.03, and estimate the relative approximate error

|PBS,r=0.06,q=0.03 − Papprox,r=0.06,q=0.03|
PBS,r=0.06,q=0.03

, (6.137)

where PBS,r=0.06,q=0.03 is the Black–Scholes value of the put option.

13. It is interesting to note that the approximate formulas (6.102) and (6.103) for
ATM call and put options do not satisfy the Put–Call parity:

P + Se−qT − C = S
(
e−qT − (r − q)T

) �= S e−rT = K e−rT .

Based on the linear Taylor expansion e−x ≈ 1 − x, the formulas (6.102) and
(6.103) can be modified to accommodate the Put–Call parity, by replacing rT
and qT by 1− e−rT and 1− e−qT , respectively. The resulting formulas are

C ≈ σS

√
T

2π

e−qT + e−rT

2
+

S (e−qT − e−rT )

2
; (6.138)

P ≈ σS

√
T

2π

e−qT + e−rT

2
− S (e−qT − e−rT )

2
. (6.139)
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(i) Show that the Put–Call parity is satisfied by the approximations (6.138)
and (6.139).

(ii) Estimate how good the new approximation (6.139) is, for an ATM put
with S = 60, q = 0.03, σ = 0.25, and T = 1, if r = 0.06, by computing
the corresponding relative approximate error. Compare this error with the
relative approximate error (6.137) found in the previous exercise, when the
approximation (6.103) was used.

14. Consider an ATM put option with strike 40 on a non–dividend paying asset
with volatility 30%, and assume zero interest rates.

Compute the relative approximation error of the approximation P ≈ σS
√

T
2π

if the put option expires in 3, 5, 10, and 20 years.

15. Consider an ATM put option with strike 40 on an asset with volatility 30% and
paying 2% dividends continuously. Assume that the interest rates are constant
at 4.5%. Compute the relative approximation error to the Black–Scholes value
of the option of the approximate value

Papprox,r �=0,q �=0 = σS

√
T

2π

(
1− (r + q)T

2

)
− (r − q)T

2
S,

if the put option expires in 1, 3, 5, 10, and 20 years.

16. A five year bond worth 101 has duration 1.5 years and convexity equal to 2.5.
Use both formula (2.57), which does not include any convexity adjustment,
and formula (6.73) to find the price of the bond if the yield increases by
ten basis points (i.e., 0.001), fifty basis points, one percent, and two percent,
respectively.

17. Consider a bond portfolio worth $50mil with DV01 equal to $10,000 and dollar
convexity equal to $400mil.

(i) Assume that the yield curve moves up by fifty basis points. What is the
new value of your bond portfolio?

(ii) The following bonds are available for trading:

Principal Value Duration Convexity
Bond 1 1000 1100 2.5 12
Bond 2 100 106 3 9

How do you immunize the portfolio?
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18. (i) If the current zero rate curve is

r1(0, t) = 0.025 +
1

100
exp

(
− t

100

)
+

t

100(t + 1)
,

find the yield of a four year semiannual coupon bond with coupon rate 6%.
Assume that interest is compounded continuously and that the face value of
the bond is 100.

(ii) If the zero rates have a parallel shift up by 10, 20, 50, 100, and 200
basis points, respectively, i.e., if the zero rate curve changes from r1(0, t) to
r2(0, t) = r1(0, t) + dr, with dr = {0.001, 0.002, 0.005, 0.01, 0.02}, find out by
how much does the yield of the bond increase in each case.

Note: A small parallel shift in the zero rate curves results in a shift of similar
size and direction for the yield of most bonds; see section 6.5 for details. This
result will be tested for the bond considered here for parallel shifts ranging
from small shifts (ten basis points) to large shifts (200 basis points).


