
Chapter 9

Lagrange multipliers. Portfolio optimization.

The Lagrange multipliers method for finding constrained extrema of multivariable
functions.

9.1 Lagrange multipliers

Optimization problems often require finding extrema of multivariable functions sub-
ject to various constraints. One method to solve such problems is by using Lagrange
multipliers, as outlined below.

Let U ⊂ R
n be an open set, and let f : U → R be a smooth function, e.g.,

infinitely many times differentiable. We want to find the extrema of f(x) subject
to m constraints given by g(x) = 0, where g : U → R

m is a smooth function, i.e.,

Find x0 ∈ U such that

max
g(x) = 0
x ∈ U

f(x) = f(x0) or min
g(x) = 0
x ∈ U

f(x) = f(x0). (9.1)

Problem (9.1) is called a constrained optimization problem. For this problem
to be well posed, a natural assumption is that the number of constraints is smaller
than the number of the degrees of freedom, i.e., m < n.

A point x0 ∈ U satisfying (9.1) is called a constrained extremum point of the
function f(x) with respect to the constraint function g(x).

To solve the constrained optimization problem (9.1), let λ = (λi)i=1:m be a
column vector of the same size, m, as the number of constraints; λ is called the
Lagrange multipliers vector.

The Lagrangian associated to problem (9.1) is the function F : U × R
m → R

given by

F (x, λ) = f(x) + λt g(x). (9.2)
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If g(x) =

(
g1(x)

...
gm(x)

)
, then F (x, λ) can be written explicitly as

F (x, λ) = f(x) +

m∑
i=1

λigi(x).

Example: For a better understanding of the Lagrange multipliers method, in
parallel with presenting the general theory, we will solve the following constrained
optimization problem:

Find the maximum and minimum values of the function f(x1, x2, x3) = 4x2 − 2x3

subject to the constraints 2x1 = x2 + x3 and x2
1 + x2

2 = 13.

We reformulate the problem by introducing the functions f : R
3 → R and g : R

3 →
R

2 given by

f(x) = 4x2 − 2x3; g(x) =

(
2x1 − x2 − x3

x2
1 + x2

2 − 13

)
, (9.3)

where x = (x1, x2, x3). We want to find x0 ∈ R
3 such that

max
g(x) = 0
x ∈ R

3

f(x) = f(x0) or min
g(x) = 0
x ∈ R

3

f(x) = f(x0).

Let λ =
(

λ1

λ2

)
be the Lagrange multiplier. The Lagrangian associated to this

problem is

F (x, λ) = f(x) + λ1g1(x) + λ2g2(x)

= 4x2 − 2x3 + λ1(2x1 − x2 − x3) + λ2(x
2
1 + x2

2 − 13). (9.4)

In the Lagrange multipliers method, the constrained extremum point x0 is found
by identifying the critical points of the Lagrangian F (x, λ). For the method to work,
the following necessary condition must be satisfied:

The gradient ∇g(x) has full rank at any point x where the constraint g(x) = 0 is
satisfied, i.e.,

rank(∇g(x)) = m, ∀ x ∈ U such that g(x) = 0. (9.5)

Example (continued): In order to use the Lagrange multipliers method for our
example, we first check that rank(∇g(x)) = 2 for any x ∈ R

3 such that g(x) = 0.
Recall that the function g(x) is given by (9.3). Then,

∇g(x) =
(

2 −1 −1
2x1 2x2 0

)
.
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Note that rank(∇g(x)) = 1 if and only if x1 = x2 = 0. Also, g(x) = 0 if and
only if 2x1 − x2 − x3 = 0 and x2

1 + x2
2 = 13. However, if x2

1 + x2
2 = 13, then it is not

possible to have x1 = x2 = 0. We conclude that, if g(x) = 0, then rank(∇g(x)) = 2.

The gradient1 of F (x, λ) with respect to both x and λ will be denoted by
∇(x,λ) F (x, λ) and is the following row vector:

∇(x,λ) F (x, λ) = ( ∇x F (x, λ) ∇λ F (x, λ) ) ; (9.6)

cf. (1.38). It is easy to see that

∂F

∂xj
(x, λ) =

∂f

∂xj
(x) +

m∑
i=1

λi
∂gi

∂xj
(x), ∀ j = 1 : n; (9.7)

∂F

∂λi
(x, λ) = gi(x), ∀ i = 1 : m. (9.8)

Denote by ∇f(x) and ∇g(x) the gradients of f : U → R and g : U → R
m, i.e.,

∇f(x) =

(
∂f

∂x1
(x, λ) . . .

∂f

∂xn
(x, λ)

)
; (9.9)

∇g(x) =

⎛
⎜⎜⎝

∂g1

∂x1
(x) ∂g1

∂x2
(x) . . . ∂g1

∂xn
(x)

∂g2

∂x1
(x) ∂g2

∂x2
(x) . . . ∂g2

∂xn
(x)

...
...

...
...

∂gm

∂x1
(x) ∂gm

∂x2
(x) . . . ∂gm

∂xn
(x)

⎞
⎟⎟⎠ ; (9.10)

cf. (1.38) and (1.40), respectively.

Then, from (9.7–9.10), it follows that

∇x F (x, λ) =

(
∂F

∂x1
(x, λ) . . .

∂F

∂xn
(x, λ)

)
= ∇f(x) + λt(∇g(x)); (9.11)

∇λ F (x, λ) =

(
∂F

∂λ1
(x, λ) . . .

∂F

∂λm
(x, λ)

)
= (g(x))t. (9.12)

From (9.6), (9.11), and (9.12), we conclude that

∇(x,λ) F (x, λ) =
( ∇f(x) + λt(∇g(x)) (g(x))t

)
. (9.13)

The following theorem gives necessary conditions for a point x0 ∈ U to be
a constrained extremum point for f(x). Its proof involves the Inverse Function
Theorem and is beyond the scope of this book.

1In this section, we use the notation ∇F , instead of DF , for the gradient of F .
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Theorem 9.1. Assume that the constraint function g(x) satisfies the condition
(9.5). If x0 ∈ U is a constrained extremum point of f(x) with respect to the con-
straint g(x) = 0, then there exists a Lagrange multiplier λ0 ∈ R

m such that the point
(x0, λ0) is a critical point for the Lagrangian function F (x, λ), i.e.,

∇(x,λ) F (x0, λ0) = 0. (9.14)

We note that ∇(x,λ) F (x, λ) is a function from R
m+n into R

m+n. Thus, solv-
ing (9.14) to find the critical points of F (x, λ) requires, in general, using the N–
dimensional Newton’s method for solving nonlinear equations; see section 5.2.1 for
details. Interestingly enough, for some financial applications such as finding min-
imum variance portfolios, problem (9.14) is a linear system which can be solved
without using Newton’s method; see section 9.3 for details.

Example (continued): Since we already checked that the condition (9.5) is sat-
isfied for this example, we proceed to find the critical points of the Lagrangian
F (x, λ). Using formula (9.4) for F (x, λ), it is easy to see that

∇(x,λ)F (x, λ) =

⎛
⎜⎜⎝

2λ1 + 2λ2x1

4− λ1 + 2λ2x2

−2− λ1

2x1 − x2 − x3

x2
1 + x2

2 − 13

⎞
⎟⎟⎠

t

.

Let x0 = (x0,1, x0,2, x0,3) and λ0 = (λ0,1, λ0,2). Then, solving ∇(x,λ)F (x0, λ0) = 0
is equivalent to solving the following system:⎧⎪⎪⎨

⎪⎪⎩
2λ0,1 + 2λ0,2 x0,1 = 0

4− λ0,1 + 2λ0,2 x0,2 = 0
−2− λ0,1 = 0

2x0,1 − x0,2 − x0,3 = 0
x2

0,1 + x2
0,2 − 13 = 0

(9.15)

From the third equation of (9.15), we find that λ0,1 = −2. Then, the system
(9.15) can be written as ⎧⎪⎨

⎪⎩
λ0,2 x0,1 = 2
λ0,2 x0,2 = −3

x0,3 = 2x0,1 − x0,2

x2
0,1 + x2

0,2 = 13

(9.16)

Since λ0,2 �= 0, we find from (9.16) that

x0,1 =
2

λ0,2
; x0,2 =

−3

λ0,2
; x0,3 =

7

λ0,2
; x2

0,1 + x2
0,2 =

13

λ2
0,2

= 13.

Thus, λ2
0,2 = 1 and the system (9.15) has two solutions, one corresponding to λ0,2 =

1, and another one corresponding to λ0,2 = −1, as follows:

x0,1 = 2; x0,2 = −3; x0,3 = 7; λ0,1 = −2; λ0,2 = 1 (9.17)
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and

x0,1 = −2; x0,2 = 3; x0,3 = −7; λ0,1 = −2; λ0,2 = −1. (9.18)

From (9.17) and (9.18), we conclude that the Lagrangian F (x, λ) has the follow-
ing two critical points:

x0 =

(
2

−3
7

)
; λ0 =

( −2
1

)
(9.19)

and

x0 =

( −2
3

−7

)
; λ0 =

( −2
−1

)
. (9.20)

Finding sufficient conditions for a critical point (x0, λ0) of the Lagrangian F (x, λ)
to correspond to a constrained extremum point x0 for f(x) is somewhat more com-
plicated (and rather rarely checked in practice).

Consider the function F0 : U → R given by

F0(x) = F (x, λ0) = f(x) + λt
0g(x).

Let D2F0(x0) be the Hessian of F0(x) evaluated at the point x0, i.e.,

D2F0(x0) =

⎛
⎜⎜⎜⎝

∂2F0

∂x2
1
(x0)

∂2F0

∂x2∂x1
(x0) . . . ∂2F0

∂xn∂x1
(x0)

∂2F0

∂x1∂x2
(x0)

∂2F0

∂x2
2
(x0) . . . ∂2F0

∂xn∂x2
(x0)

...
...

. . .
...

∂2F0

∂x1∂xn
(x0)

∂2F0

∂x2∂xn
(x0) . . . ∂2F0

∂x2
n

(x0)

⎞
⎟⎟⎟⎠ . (9.21)

Note that D2F0(x0) is an n× n matrix.
Let q(v) be the quadratic form associated to the matrix D2F0(x0), i.e.,

q(v) = vt D2F0(x0) v =
∑

1≤i,j≤n

∂2F0

∂xi∂xj
(x0)vivj, (9.22)

where v = (vi)i=1:n.
We restrict our attention to the vectors v satisfying ∇g(x0) v = 0, i.e., to the

vector space

V0 = {v ∈ R
n | ∇g(x0) v = 0}. (9.23)

Note that ∇g(x0) is a matrix with m rows and n columns, where m < n; cf. (9.10).
If the condition (9.5) is satisfied, it follows that rank(∇g(x0)) = m, i.e., the matrix
∇g(x0) has m linearly independent columns. Assume, without losing any generality,
that the first m columns of ∇g(x0) are linearly independent.
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By solving the linear system ∇g(x0) v = 0, we obtain that the entries v1, v2,
. . . , vm of the vector v can be written as linear combinations of vm+1, vm+2, . . . , vn,
the other n−m entries of v. Let

vred =

(
vm+1

...
vn

)
.

Then, by restricting q(v) to the vector space V0, we can write q(v) as a quadratic
form depending only on the entries of the vector vred, i.e.,

q(v) = qred(vred) =
∑

m+1≤i,j≤n

qred(i, j)vivj, ∀ v ∈ V0. (9.24)

Example (continued): We compute the reduced quadratic forms corresponding
to the critical points of the Lagrangian function from our example. Recall that there
are two such critical points, given by (9.19) and (9.20), respectively.

• The first critical point of F (x, λ) is x0 = (2,−3, 7) and λ0 = (−2, 1); cf. (9.19).
The function F0(x) = f(x) + λt

0g(x) is equal to

F0(x) = 4x2 − 2x3 + (−2) · (2x1 − x2 − x3) + 1 · (x2
1 + x2

2 − 13)

= x2
1 + x2

2 − 4x1 + 6x2 − 13. (9.25)

From (9.25) and (9.26), we find that

D2F0(x0) =

(
2 0 0
0 2 0
0 0 0

)
and ∇g(x0) =

(
2 −1 −1
4 −6 0

)
.

If v = (vi)i=1:3, then

q(v) = vt D2F0(x0) v = 2v2
1 + 2v2

2.

Recall that the gradient of the constraint function g(x) is

∇g(x) =
(

2 −1 −1
2x1 2x2 0

)
. (9.26)

Then, ∇g(x0) =
(

2 −1 −1
4 −6 0

)
, and the condition ∇g(x0)v = 0 is equivalent to

{
2v1 − v2 − v3 = 0

4v1 − 6v2 = 0 ⇐⇒
{

v3 = 2v1 − v2

v1 = 3
2v2

⇐⇒
{

v3 = 2v2;
v1 = 3

2v2.

Let vred = v2. The reduced quadratic form qred(vred) is

qred(vred) = 2v2
1 + 2v2

2 =
13

2
v2
2. (9.27)
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• The second critical point of F (x, λ) is x0 = (−2, 3,−7) and λ0 = (−2,−1); cf.
(9.20). The function F0(x) = f(x) + λt

0g(x) is equal to

F0(x) = − x2
1 − x2

2 − 4x1 + 6x2 + 13. (9.28)

From (9.28) and (9.26), we find that

D2F0(x0) =

( −2 0 0
0 −2 0
0 0 0

)
and ∇g(x0) =

(
2 −1 −1

−4 6 0

)
.

If v = (vi)i=1:3, then

q(v) = vt D2F0(x0) v = − 2v2
1 − 2v2

2.

Then, ∇g(x0) =
(

2 −1 −1
−4 6 0

)
and the condition ∇g(x0)v = 0 is equivalent to

{
2v1 − v2 − v3 = 0
−4v1 + 6v2 = 0 ⇐⇒

{
v3 = 2v1 − v2

v1 = 3
2v2

⇐⇒
{

v3 = 2v2;
v1 = 3

2v2.

Let vred = v2. The reduced quadratic form qred(vred) is

qred(vred) = − 2v2
1 − 2v2

2 = − 13

2
v2
2. � (9.29)

Whether the point x0 is a constrained extremum for f(x) will depend on the
nonzero quadratic form qred being either positive semidefinite, i.e.,

qred(vred) ≥ 0, ∀ vred ∈ R
n−m,

or negative semidefinite, i.e.,

qred(vred) ≤ 0, ∀ vred ∈ R
n−m.

Theorem 9.2. Assume that the constraint function g(x) satisfies condition (9.5).
Let x0 ∈ U ⊂ R

n and λ0 ∈ R
m such that the point (x0, λ0) is a critical point for the

Lagrangian function F (x, λ) = f(x) + λtg(x).
If the reduced quadratic form (9.24) corresponding to the point (x0, λ0) is pos-

itive semidefinite, then x0 is a constrained minimum for f(x) with respect to the
constraint g(x) = 0.

If the reduced quadratic form (9.24) corresponding to the point (x0, λ0) is neg-
ative semidefinite, then x0 is a constrained maximum for f(x) with respect to the
constraint g(x) = 0.

If the reduced quadratic form (9.24) corresponding to (x0, λ0) is nonzero, and it
is not positive semidefinite nor negative semidefinite, then x0 is not a constrained
extremum point for f(x) with respect to the constraint g(x) = 0.
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Example (continued): We use Theorem 9.2 to classify the critical points of the
Lagrangian function corresponding to our example.

Recall from (9.27) that the reduced quadratic form corresponding to the critical
point x0 = (2,−3, 7) and λ0 = (−2, 1) of F (x, λ) is qred(vred) = 13

2 v2
2, which is

positive semidefinite for any x ∈ R
3. Using Theorem 9.2, we conclude that the

point (2,−3, 7) is a minimum point for f(x). By direct computation, we find that
f(2,−3, 7) = −26.

Recall from (9.29) that the reduced quadratic form corresponding to the critical
point x0 = (−2, 3,−7) and λ0 = (−2,−1) of F (x, λ) is qred(vred) = −13

2 v2
2, which

is negative semidefinite for any x ∈ R
3. Using Theorem 9.2, we conclude that the

point (−2, 3,−7) is a maximum point for f(x). By direct computation, we find that
f(−2, 3,−7) = 26. �

It is important to note that the solution to the constrained optimization problem
presented in Theorem 9.2 is significantly simpler, and does not involve computing
the reduced quadratic form (9.24), if the matrix D2F0(x0) is either positive definite
or negative definite.

Corollary 9.1. Assume that the constraint function g(x) satisfies condition (9.5).
Let x0 ∈ U ⊂ R

n and λ0 ∈ R
m such that the point (x0, λ0) is a critical point for the

Lagrangian function F (x, λ) = f(x) + λtg(x). Let F0(x) = f(x) + λt
0g(x), and let

D2F0(x0) be the Hessian of F0 evaluated at the point x0.
If the matrix D2F0(x0) is positive definite, i.e., if all the eigenvalues of the matrix

D2F0(x0) are strictly greater than 0, then x0 is a constrained minimum for f(x) with
respect to the constraint g(x) = 0.

If the matrix D2F0(x0) is negative definite, i.e., if all the eigenvalues of the
matrix D2F0(x0) are strictly less than 0, then x0 is a constrained maximum for
f(x) with respect to the constraint g(x) = 0.

The result of Corollary 9.1 will be used in sections 9.3 and 9.4 for details to find
minimum variance portfolios and maximum return portfolios, respectively.

is not straightforward.
Summarizing, the steps required to solve a constrained optimization problem

using Lagrange multipliers are:

Step 1: Check that rank(∇g(x)) = m for all x such that g(x) = 0.

Step 2: Find (x0, λ0) ∈ U × R
m such that ∇(x,λ)F (x0, λ0) = 0.

Step 3.1: Compute q(v) = vt D2F0(x0) v, where F0(x) = f(x) + λt
0g(x).

Step 3.2: Compute qred(vred) by restricting q(v) to the vectors v satisfying the con-
dition ∇g(x0) v = 0. Decide whether qred(vred) is positive semidefinite or negative
semidefinite.
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Step 4: Use Theorem 9.2 to decide whether x0 is a constrained minimum point or a
constrained maximum point.

Note: If the matrix D2F0(x0) is either positive semidefinite or negative semidefinite,
skip Step 3.2 and go from Step 3.1 to the following version of Step 4:

Step 4: Use Corollary 9.1 to decide whether x0 is a constrained minimum point or
a constrained maximum point.

Several examples of solving constrained optimization problems using Lagrange
multipliers are given in section 9.1.1; the steps above are outlined for each example.
Applications of the Lagrange multipliers method to portfolio optimization problems
are presented in sections 9.3 and 9.4.

9.1.1 Examples

The first example below illustrates the fact that, if condition (9.5) is not satisfied,
then Theorem 9.1 may not hold.

Example: Find the minimum value of x2
1 + x1 + x2

2, subject to the constraint (x1 −
x2)

2 = 0.

Answer: This problem can be solved without using Lagrange multipliers as follows:
If (x1 − x2)

2 = 0, then x1 = x2. Then, the function to minimize becomes

x2
1 + x1 + x2

2 = 2x2
1 + x1 = 2

(
x1 +

1

4

)2

− 1

8
,

which achieves its minimum when x1 = −1
4 . We conclude that there exists a unique

constrained minimum point x1 = x2 = −1
4 , and that the corresponding minimum

value is −1
8 .

Although we solved the problem directly, we attempt to find an alternative solu-
tion using the Lagrange multipliers method. According to the framework outlined
in section 9.1, we want to find the minimum of the function

f(x1, x2) = x2
1 + x1 + x2

2

for (x1, x2) ∈ R
2, such that the constraint g(x1, x2) = 0 is satisfied, where

g(x1, x2) = (x1 − x2)
2.

By definition,

∇g(x) =

(
∂g

∂x1

∂g

∂x2

)
= ( 2(x1 − x2) − 2(x1 − x2) ) .

Note that g(x) = 0 if and only if x1 = x2. Thus, ∇g(x) = (0 0) (and therefore
rank(∇g(x)) = 0) for all x such that g(x) = 0. We conclude that condition (9.5) is
not satisfied at any point x such that g(x) = 0.
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Since the problem has one constraint, we only have one Lagrange multiplier,
which we denote by λ ∈ R. From (9.2), it follows that the Lagrangian is

F (x1, x2, λ) = f(x1, x2) + λg(x1, x2) = x2
1 + x1 + x2

2 + λ(x1 − x2)
2.

The gradient ∇(x,λ)F (x, λ) is computed as in (9.13) and has the form

∇(x,λ) F (x, λ) =
(

2x1 + 1 + 2λ(x1 − x2) 2x2 − 2λ(x1 − x2) (x1 − x2)
2
)
.

Finding the critical points for F (x, λ) requires solving ∇(x,λ) F (x, λ) = 0, which is
equivalent to the following system of equations:{

2x1 + 1 + 2λ(x1 − x2) = 0;
2x2 − 2λ(x1 − x2) = 0;

(x1 − x2)
2 = 0.

This system does not have a solution: from the third equation, we obtain that
x1 = x2. Then, from the second equation, we find that x2 = 0, which implies that
x1 = 0. Substituting x1 = x2 = 0 into the first equation, we obtain 1 = 0, which is
a contradiction.

In other words, the Lagrangian F (x, λ) has no critical points. However, we
showed before that the point (x1, x2) =

(−1
4 ,−1

4

)
is a constrained minimum point

for f(x) given the constraint g(x) = 0. The reason Theorem 9.1 does not apply in
this case is that condition (9.5), which was required in order for Theorem 9.1 to
hold, is not satisfied. �

Example: Find the positive numbers x1, x2, x3 such that x1x2x3 = 1 and x1x2 +
x2x3 + x3x1 is minimized.

Answer: We first reformulate the problem as a constrained optimization problem.
Let U =

∏
i=1:3(0,∞) ⊂ R

3 and let x = (x1, x2, x3) ∈ U . The functions f : U → R

and g : U → R are defined as

f(x) = x1x2 + x2x3 + x3x1; g(x) = x1x2x3 − 1.

We want to minimize f(x) over the set U subject to the constraint g(x) = 0.

Step 1: Check that rank(∇g(x)) = 1 for any x such that g(x) = 0.
Let x = (x1, x2, x3) ∈ U . It is easy to see that

∇g(x) = (x2x3 x1x3 x1x2) . (9.30)

Note that ∇g(x) �= 0, since xi > 0, i = 1 : 3. Therefore, rank(∇g(x)) = 1 for all
x ∈ U , and condition (9.5) is satisfied.

Step 2: Find (x0, λ0) such that ∇(x,λ)F (x0, λ0) = 0.
The Lagrangian associated to this problem is

F (x, λ) = x1x2 + x2x3 + x3x1 + λ (x1x2x3 − 1), (9.31)
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where λ ∈ R is the Lagrange multiplier.
Let x0 = (x0,1, x0,2, x0,3). From (9.31), we find that ∇(x,λ)F (x0, λ0) = 0 is

equivalent to the following system:⎧⎨
⎩

x0,2 + x0,3 + λ0 x0,2 x0,3 = 0;
x0,1 + x0,3 + λ0 x0,1 x0,3 = 0;
x0,1 + x0,2 + λ0 x0,1 x0,2 = 0;

x0,1 x0,2 x0,3 = 1.

By multiplying the first three equations by x0,1, x0,2, and x0,3, respectively, and
using the fact that x0,1x0,2x0,3 = 1, we obtain that

−λ = x0,1 x0,2 + x0,1 x0,3 = x0,1 x0,2 + x0,2 x0,3 = x0,1 x0,3 + x0,2 x0,3.

Since x0,i �= 0, i = 1 : 3, we find that x0,1 = x0,2 = x0,3. Since x0,1 x0,2 x0,3 = 1, we
conclude that x0,1 = x0,2 = x0,3 = 1 and λ0 = −2.

Step 3.1: Compute q(v) = vt D2F0(x0) v.
Since λ0 = −2, we find that F0(x) = f(x) + λt

0g(x) is given by

F0(x) = x1x2 + x2x3 + x3x1 − 2x1x2x3 + 2.

The Hessian of F0(x) is

D2F0(x1, x2, x3) =

(
0 1− 2x3 1− 2x2

1− 2x3 0 1− 2x1

1− 2x2 1− 2x1 0

)
,

and therefore

D2F0(1, 1, 1) =

(
0 −1 −1

−1 0 −1
−1 −1 0

)
.

From (9.22), we find that the quadratic form q(v) is

q(v) = vt D2F0(1, 1, 1) v = − 2v1v2 − 2v2v3 − 2v1v3. (9.32)

Step 3.2: Compute qred(vred).
We first solve formally the equation ∇g(1, 1, 1) v = 0, where v = (vi)i=1:3 is an
arbitrary vector. From (9.30), we find that ∇g(1, 1, 1) = (1 1 1), and

∇g(1, 1, 1) v = v1 + v2 + v3 = 0.

By solving for v1 in terms of v2 and v3 we obtain that v1 = −v2 − v3. Let vred =(
v2

v3

)
. We substitute −v2 − v3 for v1 in (9.32), to obtain the reduced quadratic

form qred(vred), i.e.,

qred(vred) = 2v2
2 + 2v2v3 + 2v2

3 = v2
2 + v2

3 + (v2 + v3)
2.

Therefore, qred(vred) > 0 for all (v2, v3) �= (0, 0), which means that qred is a positive
definite form.

Step 4: From Theorem 9.2, we conclude that the point x0 = (1, 1, 1) is a constrained
minimum for the function f(x) = x1x2 + x2x3 + x3x1, with x1, x2, x3 > 0, subject
to the constraint x1x2x3 = 1. �


