5.2 Numerical methods for N–dimensional nonlinear problems

For N dimensional problems there are no practical analogs of the bisection method. However, Newton’s method can easily be extended to N dimensional problems. An approximate Newton’s method similar to the secant method and based on finite difference–type approximations also exists.

5.2.1 The N–dimensional Newton’s Method

Let $F : \mathbb{R}^N \to \mathbb{R}^N$ given by

$$F(x) = (F_i(x))_{i=1:N},$$

where $F_i : \mathbb{R}^N \to \mathbb{R}$. Assume that all the partial order derivatives of the functions $F_i(x)$, $i = 1 \ldots N$, are continuous.

We want to solve the nonlinear N-dimensional problem

$$F(x) = 0.$$

Recall from (1.40) that the gradient $DF(x)$ of $F(x)$ is an $N \times N$ matrix:

$$DF(x) = \begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1}(x) & \frac{\partial F_1(x)}{\partial x_2}(x) & \cdots & \frac{\partial F_1(x)}{\partial x_N}(x) \\ \frac{\partial F_2(x)}{\partial x_1}(x) & \frac{\partial F_2(x)}{\partial x_2}(x) & \cdots & \frac{\partial F_2(x)}{\partial x_N}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_N(x)}{\partial x_1}(x) & \frac{\partial F_N(x)}{\partial x_2}(x) & \cdots & \frac{\partial F_N(x)}{\partial x_N}(x) \end{pmatrix}.$$

The recursion for Newton’s method follows from the linear Taylor expansion of $F(x)$, i.e.,

$$F(x) \approx F(x_k) + DF(x_k)(x - x_k);$$

(cf. (6.29) for $a = x_k$. Here, $DF(x_k)(x - x_k)$ is a matrix–vector multiplication. Let $x = x_{k+1}$ in (5.18). Approximating $F(x_{k+1})$ by 0 (which happens in the limit, if convergence to a solution for $F(x) = 0$ is achieved), we find that

$$0 \approx F(x_k) + DF(x_k)(x_{k+1} - x_k).$$

Changing (5.19) into an equality and solving for x_{k+1}, we obtain the following recursion for Newton’s method for N dimensional problems:

$$x_{k+1} = x_k - (DF(x_k))^{-1}F(x_k), \quad \forall \, k \geq 0.$$

At each step, the vector $(DF(x_k))^{-1}F(x_k)$ must be computed. In practice, the inverse matrix $(DF(x_k))^{-1}$ is never explicitly computed, since this would be very expensive computationally. Instead, we note that computing the vector $v_k = (DF(x_k))^{-1}F(x_k)$ is equivalent to solving the linear system

$$DF(x_k)v_k = F(x_k).$$

This is done using numerical linear algebra methods, e.g., by computing the LU decomposition factors of the matrix $DF(x_k)$ and then doing a forward and a backward substitution.
5.2. NUMERICAL METHODS FOR N–DIMENSIONAL PROBLEMS

It is not our goal here to discuss such methods; see [39] for details on numerical linear algebra methods. We subsequently assume that a routine for solving linear systems called solve_linear_system exists such that, given a nonsingular square matrix A and a vector b, the vector

$$x = \text{solve}_\text{linear}_\text{system}(A, b)$$

is the unique solution of the linear system $Ax = b$.

The vector $v_k = (DF(x_k))^{-1}F(x_k)$ can then be computed as

$$v_k = \text{solve}_\text{linear}_\text{system}(DF(x_k), F(x_k)),$$

and recursion (5.20) can be written as

$$x_{k+1} = x_k - \text{solve}_\text{linear}_\text{system}(DF(x_k), F(x_k)), \forall k \geq 0.$$

The N–dimensional Newton’s method iteration is stopped and convergence to a solution to the problem $F(x) = 0$ is declared when the following two conditions are satisfied:

$$||F(x_{\text{new}})|| \leq \text{tol} \text{approx} \quad \text{and} \quad ||x_{\text{new}} - x_{\text{old}}|| \leq \text{tol} \text{consec}, \quad (5.21)$$

where x_{new} is the most recent value generated by Newton’s method and x_{old} is the value previously computed by the algorithm. Possible choices for the tolerance factors are $\text{tol} \text{consec} = 10^{-6}$ and $\text{tol} \text{approx} = 10^{-9}$; see the pseudocode from Table 5.4 for more details.

Table 5.4: Pseudocode for the N-dimensional Newton’s Method

| Input: |
|-----------------|----------------|
| x_0 = initial guess |
| $F(x)$ = given function |
| $\text{tol} \text{approx}$ = largest admissible value of $||F(x)||$ when solution is found |
| $\text{tol} \text{consec}$ = largest admissible distance between two consecutive approximations when solution is found |

| Output: |
|-----------------|----------------|
| x_{new} = approximate solution for $f(x) = 0$ |
| $x_{\text{new}} = x_0$; $x_{\text{old}} = x_0 - 1$ |
| while ($||F(x_{\text{new}})|| > \text{tol} \text{approx}$) or ($||x_{\text{new}} - x_{\text{old}}|| > \text{tol} \text{consec}$) |
| $x_{\text{old}} = x_{\text{new}}$ |
| compute $DF(x_{\text{old}})$ |
| $x_{\text{new}} = x_{\text{old}} - \text{solve}_\text{linear}_\text{system}(DF(x_{\text{old}}), F(x_{\text{old}}))$ |

Note that $|| \cdot ||$ represents the Euclidean norm, i.e., $||v|| = \left(\sum_{i=1}^{N} |v_i|^2\right)^{1/2}$, where $v = (v_i)_{i=1:N}$ is a vector in \mathbb{R}^N.
As was the case for the one–dimensional version, the N–dimensional Newton’s method converges quadratically if certain conditions are satisfied.

Theorem 5.3. Let x^* be a solution of $F(x) = 0$, where $F(x)$ is a function with continuous second order partial derivatives. If $DF(x^*)$ is a nonsingular matrix, and if x_0 is close enough to x^*, then Newton’s method converges quadratically, i.e., there exists $M > 0$ and n_M a positive integer such that

\[\frac{||x_{k+1} - x^*||}{||x_k - x^*||^2} < M, \quad \forall k \geq n_M. \]

Example: Use Newton’s method to solve $F(x) = 0$, for

\[F(x) = \begin{pmatrix}
 x_1^3 + 2x_1x_2 + x_2^3 - x_2x_3 + 9 \\
 2x_1^3 + 2x_1x_2^3 + x_3^4 - x_2'^2x_3 - 2 \\
 x_1x_2x_3 + x_1^3 - x_3^2 - x_1x_2 - 4
\end{pmatrix}. \]

Answer: Note that

\[DF(x) = \begin{pmatrix}
 3x_1^2 + 2x_2 \\
 4x_1 + 2x_2^2 \\
 x_2x_3 + 3x_1^2 - x_2^2
\end{pmatrix}, \quad \begin{pmatrix}
 2x_1 - x_3 \\
 4x_1x_2 + 3x_2^2x_3 - 2x_2x_3 \\
 x_1x_3 - 2x_1x_2
\end{pmatrix}. \]

We use the algorithm from Table 5.4 with $\text{tol_consec} = 10^{-6}$ and $\text{tol_approx} = 10^{-9}$. For the initial guess

\[x_0 = \begin{pmatrix}
 1 \\
 2 \\
 3
\end{pmatrix}, \quad \text{the solution} \quad x^* = \begin{pmatrix}
 -1.690550759854953 \\
 1.983107242868416 \\
 -0.88458078475291
\end{pmatrix} \]

is found after 9 iterations.

For the initial guess

\[x_0 = \begin{pmatrix}
 2 \\
 2 \\
 2
\end{pmatrix}, \quad \text{the solution} \quad x^* = \begin{pmatrix}
 -1 \\
 3 \\
 1
\end{pmatrix} \]

is found after 40 iterations. \(\square\)

5.2.2 The Approximate Newton’s Method

In many instances, it is not possible (or efficient) to find a closed formula for the matrix $DF(x)$ which is needed for Newton’s method; cf. (5.20). In these cases, finite difference approximations can be used to estimate each entry of $DF(x)$. The resulting method is called the Approximate Newton’s Method.

The entry of $DF(x)$ on the position (i, j), i.e., $\frac{\partial F_i}{\partial x_j}(x)$, is estimated using forward finite differences approximations (7.2) as

\[\frac{\partial F_i}{\partial x_j}(x) \approx \Delta_j F_i(x) = \frac{F_i(x + h\mathbf{e}_j) - F_i(x)}{h}, \quad (5.22) \]