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1.2 Solutions to Chapter 1 Exercises

Problem 1: Compute ∫
ln(x) dx.

Solution: Using integration by parts, we find that∫
ln(x) dx =

∫
(x)′ ln(x) dx = x ln(x)−

∫
x(ln(x))′ dx

= x ln(x)−
∫

1 dx = x ln(x)− x + C. �

Problem 2: Compute ∫
1

x ln(x)
dx

by using the substitution u = ln(x).

Solution: Let u = ln(x). Then du = dx
x and therefore∫

1

x ln(x)
dx =

∫
1

u
du = ln(|u|) = ln(| ln(x)|) + C. �

Problem 3: Show that (tanx)′ = 1/(cos x)2 and conclude that∫
1

1 + x2 dx = arctan(x) + C.

Solution: Using the Quotient Rule, we find that

(tan x)′ =

(
sin x

cos x

)′
=

(sin x)′ cos x− sin x(cos x)′

(cos x)2

=
(cos x)2 + (sin x)2

(cos x)2 =
1

(cos x)2 . (1.3)

To prove that
∫ 1

1+x2dx = arctan(x), we will show that

(arctan(x))′ =
1

1 + x2 .

Let f(x) = tan x. Then arctan(x) = f−1(x). Recall that(
f−1(x)

)′
=

1

f ′(f−1(x))
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and note that f ′(x) = (tan x)′ = 1
(cos x)2 ; cf. (1.3). Therefore,

(arctan(x))′ = (cos(f−1(x)))2 = (cos(arctan(x)))2. (1.4)

Let α = arctan(x). Then tan(α) = x. It is easy to see that

x2 + 1 =
1

(cos(α))2 ,

since (sin(α))2 + (cos(α))2 = 1. Thus,

(cos(arctan(x)))2 = (cos(α))2 =
1

x2 + 1
. (1.5)

From (1.4) and (1.5), we conclude that

(arctan(x))′ =
1

x2 + 1
,

and therefore that ∫
1

1 + x2 dx = arctan(x) + C.

We note that the antiderivative of a rational function is often computed
using the substitution x = tan

(
z
2

)
.

For example, to compute
∫ 1

1+x2dx using the substitution x = tan
(

z
2

)
,

note that

dx =
d

dz

(
tan

(z

2

))
dz =

1

2(cos
(

z
2

)
)2

dz.

Then ∫
1

1 + x2 dx =

∫
1

1 + (tan
(

z
2

)
)2
· 1

2(cos
(

z
2

)
)2

dz

=

∫ (
cos

(
z
2

))2

(sin(α))2 + (cos(α))2 ·
1

2(cos
(

z
2

)
)2

dz

=

∫
1

2
dz =

z

2
= arctan(x) + C. �

Problem 4: Compute ∫
xn ln(x) dx.
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Solution: If n �= −1, we use integration by parts and find that∫
xn ln(x) dx =

xn+1

n + 1
ln(x) −

∫
xn+1

n + 1
· 1

x
dx

=
xn+1 ln(x)

n + 1
− 1

n + 1

∫
xn dx

=
xn+1 ln(x)

n + 1
− xn+1

(n + 1)2 + C.

For n = −1, we obtain that∫
ln(x)

x
dx =

(ln(x))2

2
+ C. �

Problem 5: Compute ∫
xnex dx.

Solution: For every integer n ≥ 0, let

fn(x) =

∫
xnex dx.

By using integration by parts, we find that

fn(x) = xnex − n

∫
xn−1ex dx,

which can be written as

fn(x) = xnex − nfn−1(x), ∀ n ≥ 1. (1.6)

Note that1

f0(x) =

∫
exdx = ex.

By letting n = 1 in (1.6), we obtain that

f1(x) = xex − f0(x) = (x− 1)ex.

By letting n = 2 in (1.6), we obtain that

f2(x) = x2ex − 2f1(x) = (x2 − 2x + 2)ex.

1To avoid confusions, we will not add a constant C when writing down the formulas for
f0(x), f1(x), f2(x), and f3(x).
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By letting n = 3 in (1.6), we obtain that

f3(x) = x3ex − 3f2(x) = (x3 − 3x2 + 6x− 6)ex.

The following general formula can be proved by induction:

∫
xnex dx = fn(x) =

(
n∑

k=0

xk (−1)n−kn!

k!

)
ex + C, ∀ n ≥ 0. �

Problem 6: Compute ∫
(ln(x))n dx.

Solution: For every integer n ≥ 0, let

fn(x) =

∫
(ln(x))n dx.

By using integration by parts, it is easy to see that, for any n ≥ 1,∫
(ln(x))n dx = x(ln(x))n −

∫
x ((ln(x))n)′ dx

= x(ln(x))n −
∫

x · n(ln(x))n−1 · (ln(x))′ dx

= x(ln(x))n −
∫

x · n(ln(x))n−1 · 1

x
dx

= x(ln(x))n − n

∫
(ln(x))n−1 dx,

and therefore

fn(x) = x(ln(x))n − nfn−1(x), ∀ n ≥ 1. (1.7)

Note that

f0(x) =

∫
1dx = x.

By letting n = 1 in (1.7), we obtain that

f1(x) = x ln(x)− f0(x) = x(ln(x)− 1).

By letting n = 2 in (1.7), we obtain that

f2(x) = x(ln(x))2 − 2f1(x) = x
(
(ln(x))2 − 2 ln(x) + 2

)
.
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By letting n = 3 in (1.7), we obtain that

f3(x) = x(ln(x))3 − 3f2(x) = x
(
ln(x))3 − 3(ln(x))2 + 6 ln(x)− 6

)
.

The following general formula can be obtained by induction:∫
(ln(x))n dx = x

n∑
k=0

(−1)n−kn!

k!
(ln(x))k + C, ∀ n ≥ 0. �

Problem 7: Show that(
1 +

1

x

)x

< e <

(
1 +

1

x

)x+1

, ∀ x ≥ 1. (1.8)

Solution: By taking natural logs on both sides of (1.8), we find that (1.8) is
equivalent to

x ln

(
1 +

1

x

)
< 1 < (x + 1) ln

(
1 +

1

x

)
,

which can be written as

1

x + 1
< ln

(
1 +

1

x

)
<

1

x
, ∀ x ≥ 1. (1.9)

Let

f(x) =
1

x
− ln

(
1 +

1

x

)
; g(x) = ln

(
1 +

1

x

)
− 1

x + 1
.

Then,

f ′(x) = − 1

x2 +
1

x(x + 1)
= − 1

x2(x + 1)
< 0;

g′(x) = − 1

x(x + 1)
+

1

(x + 1)2 = − 1

x(x + 1)2 < 0

We conclude that both f(x) and g(x) are decreasing functions. Since

lim
x→∞ f(x) = lim

x→∞ g(x) = 0,

it follows that f(x) > 0 and g(x) > 0 for all x > 0, and therefore

1

x
> ln

(
1 +

1

x

)
>

1

x + 1
, ∀ x > 0,
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which is what we wanted to show; cf. (1.9). �

Problem 8: Use l’Hôpital’s rule to show that the following two Taylor
approximations hold when x is close to 0:

√
1 + x ≈ 1 +

x

2
;

ex ≈ 1 + x +
x2

2
.

In other words, show that the following limits exist and are constant:

lim
x→0

√
1 + x − (

1 + x
2

)
x2 and lim

x→0

ex −
(
1 + x + x2

2

)
x3 .

Solution: The numerator and denominator of each limit are differentiated
until a finite limit is computed. L’Hôpital’s rule can then be applied sequen-
tially to obtain the value of the initial limit:

lim
x→0

√
1 + x − (

1 + x
2

)
x2 = lim

x→0

1
2
√

1+x
− 1

2

2x

= lim
x→0

− 1
4(1+x)3/2

2

= −1

8
.

We conclude that
√

1 + x = 1 +
x

2
+ O(x2), as x → 0.

Similarly,

lim
x→0

ex −
(
1 + x + x2

2

)
x3 = lim

x→0

ex − (1 + x)

3x2

= lim
x→0

ex − 1

6x

= lim
x→0

ex

6

=
1

6
,

and therefore

ex = 1 + x +
x2

2
+ O(x3) as x → 0. �
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Problem 9: Compute the following limits:

(i) lim
x→∞

1√
x2 − 4x + 1− x

;

(ii) lim
x→∞

1√
x2 − 4x + 1− x + 2

.

Solution: (i) By multiplying the denominator of the fraction with its conju-
gate, it is easy to see that

lim
x→∞

1√
x2 − 4x + 1− x

= lim
x→∞

√
x2 − 4x + 1 + x

(
√

x2 − 4x + 1 + x)(
√

x2 − 4x + 1− x)

= lim
x→∞

√
x2 − 4x + 1 + x

(
√

x2 − 4x + 1)2 − x2

= lim
x→∞

√
x2 − 4x + 1 + x

x2 − 4x + 1 − x2

= lim
x→∞

√
x2 − 4x + 1 + x

−4x + 1

= lim
x→∞

√
1− 4

x + 1
x2 + 1

−4 + 1
x

=
1 + 1

−4

= −1

2
.

(ii) Using a similar method as before, we find that

lim
x→∞

1√
x2 − 4x + 1− x + 2

= lim
x→∞

1√
x2 − 4x + 1− (x− 2)

= lim
x→∞

√
x2 − 4x + 1 + (x− 2)

(
√

x2 − 4x + 1 + (x− 2))(
√

x2 − 4x + 1− (x− 2))

= lim
x→∞

√
x2 − 4x + 1 + (x− 2)

(
√

x2 − 4x + 1)2 − (x− 2)2

= lim
x→∞

√
x2 − 4x + 1 + (x− 2)

x2 − 4x + 1 − (x2 − 4x + 4)

= lim
x→∞

√
x2 − 4x + 1 + (x− 2)

−3
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= −1

3
lim
x→∞

(√
x2 − 4x + 1 + x− 2

)
= −∞. �

Problem 10: Use the definition

e = lim
x→∞

(
1 +

1

x

)x

to show that
1

e
= lim

x→∞

(
1− 1

x

)x

.

Solution: Note that

1− 1

x
=

x− 1

x
=

1
x

x−1
=

1

1 + 1
x−1

.

Then,

lim
x→∞

(
1− 1

x

)x

= lim
x→∞

1(
1 + 1

x−1

)x

= lim
x→∞

1(
1 + 1

x−1

)x−1 ·
1

1 + 1
x−1

=
1

e
,

since

lim
x→∞ 1 +

1

x− 1
= 1

and

lim
x→∞

(
1 +

1

x− 1

)x−1

= lim
x→∞

(
1 +

1

x

)x

= e. �

Problem 11: Let K, T , σ and r be positive constants, and define the
function g : R → R as

g(x) =
1√
2π

∫ b(x)

0
e−

y2

2 dy,

where

b(x) =

(
ln

( x

K

)
+

(
r +

σ2

2

)
T

)
/
(
σ
√

T
)

. (1.10)

Compute g′(x).
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Solution: Recall that

d

dx

( ∫ b(x)

a(x)
f(y) dy

)
= f(b(x))b′(x)− f(a(x))a′(x), (1.11)

and note that

b′(x) =
1

xσ
√

T
.

Using (1.11) for a(x) = 0, b(x) given by (1.10), and f(y) = 1√
2π

e−
y2

2 , we

obtain that

g′(x) =
1√
2π

e−
(b(x))2

2 · b′(x) =
1√
2π

exp

(
−(b(x))2

2

)
1

xσ
√

T

=
1

xσ
√

2πT
exp

⎛
⎜⎝−

(
ln

(
x
K

)
+

(
r + σ2

2

)
T
)2

2σ2T

⎞
⎟⎠ . �

Problem 12: Let f(x) be a continuous function. Show that

lim
h→0

1

2h

∫ a+h

a−h

f(x) dx = f(a), ∀ a ∈ R.

Solution: Let F (x) =
∫

f(x) dx be the antiderivative of f(x). From the
Fundamental Theorem of Calculus, it follows that

1

2h

∫ a+h

a−h

f(x) dx =
F (a + h)− F (a− h)

2h
.

Using l’Hôpital’s rule and the fact that F ′(x) = f(x), we find that

lim
h→0

1

2h

∫ a+h

a−h

f(x) dx = lim
h→0

F (a + h)− F (a− h)

2h

= lim
h→0

f(a + h) + f(a− h)

2
= f(a),

since f(x) is a continuous function. �

Problem 13: Let

f(x) =
1

σ
√

2π
exp

(
−(x− μ)2

2σ2

)
.
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Assume that g : R → R is a uniformly bounded2 continuous function, i.e.,
assume that there exists a constant C such that |g(x)| ≤ C for all x ∈ R.
Show that

lim
σ↘0

∫ ∞

−∞
f(x)g(x) dx = g(μ).

Solution: Using the change of variables y = x−μ
σ , we find that∫ ∞

−∞
f(x)g(x) dx =

1

σ
√

2π

∫ ∞

−∞
g(x) exp

(
−(x− μ)2

2σ2

)
dx

=
1√
2π

∫ ∞

−∞
g(μ + σy) e−

y2

2 dy. (1.12)

Recall that
1√
2π

∫ ∞

−∞
e−

y2

2 dy = 1, (1.13)

since, e.g., the function 1√
2π

e−
y2

2 is the probability density function of the

standard normal variable. From (1.12) and (1.13) we obtain that

g(μ)−
∫ ∞

−∞
f(x)g(x) dx =

1√
2π

∫ ∞

−∞
(g(μ)− g(μ + σy)) e−

y2

2 dy. (1.14)

Our goal is to show that the right hand side of (1.14) goes to 0 as σ ↘ 0.
Since g(x) is a continuous function, it follows that, for any ε > 0, there

exists δ1(ε) > 0 such that

|g(μ)− g(x)| < ε, ∀ |x− μ| < δ1(ε). (1.15)

Using the fact that the integral (1.13) exists and is finite, we obtain that,
for any ε > 0, there exists δ2(ε) > 0 such that

1√
2π

∫ −δ2(ε)

−∞
e−

y2

2 dy +
1√
2π

∫ ∞

δ2(ε)
e−

y2

2 dy < ε. (1.16)

Since |g(x)| ≤ C for all x ∈ R, it follows from (1.16) that

1√
2π

∫ −δ2(ε)

−∞
|g(μ)− g(μ + σy)| e−

y2

2 dy

+
1√
2π

∫ ∞

δ2(ε)
|g(μ)− g(μ + σy)| e−

y2

2 dy < 2Cε. (1.17)

2The uniform boundedness condition was chosen for simplicity, and it can be relaxed,
e.g., to functions which have polynomial growth at infinity.
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It is easy to see that, if σ < δ1(ε)
δ2(ε)

, then

|(μ + σy)− μ| = σ|y| < δ1(ε)
|y|

δ2(ε)
≤ δ1(ε), ∀ y ∈ [−δ2(ε), δ2(ε)]. (1.18)

Then, from (1.15) and (1.18) we find that

|g(μ)− g(μ + σy)| < ε, ∀ y ∈ [−δ2(ε), δ2(ε)], (1.19)

and therefore

1√
2π

∫ δ2(ε)

−δ2(ε)
|g(μ)− g(μ + σy)| e−

y2

2 dy < ε. (1.20)

From (1.14), (1.17), and (1.20), it follows that, for any ε > 0, there exist

δ1(ε) > 0 and δ2(ε) > 0 such that, if σ < δ1(ε)
δ2(ε)

, then∣∣∣∣g(μ)−
∫ ∞

−∞
f(x)g(x) dx

∣∣∣∣ ≤ 1√
2π

∫ ∞

−∞
|g(μ)− g(μ + σy)| e−

y2

2 dy

< (2C + 1)ε.

We conclude, by definition, that

lim
σ↘0

∫ ∞

−∞
f(x)g(x) dx = g(μ). �

Problem 14: Let ci and ti, i = 1 : n, be positive constants.

(i) Let f : R → R given by

f(y) =
n∑

i=1

cie
−yti.

Compute f ′(y) and f ′′(y).

(ii) Let g : R → R given by

g(y) =
n∑

i=1

ci

(
1 +

y

m

)−mti
.

Compute g′(y) and g′′(y).

Solution: (i) Note that(
e−yti

)′
=

d

dy

(
e−yti

)
= − tie

−yti;

(
e−yti

)′′
=

d

dy

(−tie
−yti

)
= t2i e

−yti.
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Then,

f ′(y) = −
n∑

i=1

citie
−yti;

f ′′(y) =
n∑

i=1

cit
2
i e
−yti.

(ii) Using Chain Rule, we obtain that((
1 +

y

m

)−mti
)′

=
(
1 +

y

m

)−mti−1
· (−mti) · 1

m

= −ti

(
1 +

y

m

)−mti−1
;((

1 +
y

m

)−mti
)′′

= −ti

(
1 +

y

m

)−mti−2
· (−mti − 1) · 1

m

= ti

(
ti +

1

m

)(
1 +

y

m

)−mti−2
.

Then,

g′(y) = −
n∑

i=1

citi

(
1 +

y

m

)−mti−1
;

g′′(y) =
n∑

i=1

citi

(
ti +

1

m

)(
1 +

y

m

)−mti−2
. �

Problem 15: Let f : R
3 → R given by

f(x) = 2x2
1 − x1x2 + 3x2x3 − x2

3,

where x = (x1, x2, x3).

(i) Compute the gradient and Hessian of the function f(x) at the point
a = (1,−1, 0), i.e., compute Df(1,−1, 0) and D2f(1,−1, 0).

(ii) Show that

f(x) = f(a) + Df(a) (x− a) +
1

2
(x− a)t D2f(a) (x− a).

Here, x, a, and x− a are 3× 1 column vectors, i.e.,

x =

(
x1
x2
x3

)
; a =

(
1

−1
0

)
; x− a =

(
x1 − 1
x2 + 1

x3

)
.
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Solution: (i) Recall that

Df(x) =

(
∂f

∂x1
(x)

∂f

∂x2
(x)

∂f

∂xn
(x)

)
= (4x1 − x2, − x1 + 3x3, 3x2 − 2x3) ;

D2f(x) =

⎛
⎜⎜⎝

∂2f
∂x2

1
(x) ∂2f

∂x2∂x1
(x) ∂2f

∂x3∂x1
(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x2

2
(x) ∂2f

∂x3∂x2
(x)

∂2f
∂x1∂x3

(x) ∂2f
∂x2∂x3

(x) ∂2f
∂x2

3
(x)

⎞
⎟⎟⎠ =

(
4 −1 0

−1 0 3
0 3 −2

)
.

Then,

f(a) = f(1,−1, 0) = 3 (1.21)

Df(a) = Df(1,−1, 0) = (5, − 1, − 3); (1.22)

D2f(a) = D2f(1,−1, 0) =

(
4 −1 0

−1 0 3
0 3 −2

)
. (1.23)

(ii) We substitute the values from (1.21), (1.22) and (1.23) for f(a), Df(a)
and D2f(a), respectively, in the expression f(a) + Df(a) (x − a) + 1

2 (x −
a)t D2f(a) (x− a) and obtain that

f(a) + Df(a) (x− a) +
1

2
(x− a)t D2f(a) (x− a)

= 3 + (5,−1,−3)

(
x1 − 1
x2 + 1

x3

)

+
1

2
(x1 − 1, x2 + 1, x3)

(
4 −1 0

−1 0 3
0 3 −2

)(
x1 − 1
x2 + 1

x3

)

= 3 + (5x1 − x2 − 3x3 − 6)

+
(
2x2

1 − 5x1 − x1x2 + x2 + 3x2x3 + 3x3 − x2
3 + 3

)
= 2x2

1 − x1x2 + 3x2x3 − x2
3

= f(x). �

Problem 16: Let

u(x, t) =
1√
4πt

e−
x2

4t , for t > 0, x ∈ R.

Compute ∂u
∂t and ∂2u

∂x2 , and show that

∂u

∂t
=

∂2u

∂x2 .
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Solution: By direct computation and using the Product Rule, we find that

∂u

∂t
= −1

2
t−3/2 1√

4π
e−

x2

4t +
1√
4πt

e−
x2

4t

(
−x2

4
·
(
− 1

t2

))

= − 1

2t
√

4πt
e−

x2

4t +
x2

4t2
· 1√

4πt
e−

x2

4t ; (1.24)

∂u

∂x
= − x

2t
· 1√

4πt
e−

x2

4t ;

∂2u

∂x2 = − 1

2t
√

4πt
e−

x2
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4πt
e−

x2

4t (1.25)

From (1.24) and (1.25), we conclude that

∂2u

∂x2 =
∂u

∂t
. �

Problem 17: Show that the values of a plain vanilla put option and of a
plain vanilla call option with the same maturity and strike, and on the same
underlying asset, are equal if and only if the strike is equal to the forward
price.

Solution: Recall that the forward price is F = Se−(r−q)T .
From the Put–Call parity, we know that

C − P = Se−qT −Ke−rT . (1.26)

If a call and a put with the same strike K have the same value, i.e., if C = P
in (1.26), then Se−qT = Ke−rT . Thus,

K = Se(r−q)T ,

i.e., the strike of the options is equal to the forward price. �

Problem 18: Consider a portfolio with the following positions:
• long one call option with strike K1 = 30;
• short two call options with strike K2 = 35;
• long one call option with strike K3 = 40.

All options are on the same underlying asset and have maturity T . Draw
the payoff diagram at maturity of the portfolio, i.e., plot the value of the
portfolio V (T ) at maturity as a function of S(T ), the price of the underlying
asset at time T .

Solution: A butterfly spread is an options portfolio made of a long position
in one call option with strike K1, a long position in a call option with strike
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K3, and a short position in two calls with strike equal to the average of the
strikes K1 and K3, i.e., with strike K2 = K1+K3

2 ; all options have the same
maturity and have the same underlying asset.

The payoff at maturity of a butterfly spread is always nonnegative, and
it is positive if the price of the underlying asset at maturity is between the
strikes K1 and K3, i.e., if K1 < S(T ) < K3.

For our problem, the values of the options at maturity are, respectively,

C1(T ) = max(S(T )−K1, 0) = max(S(T )− 30, 0);

C2(T ) = max(S(T )−K2, 0) = max(S(T )− 35, 0);

C3(T ) = max(S(T )−K3, 0) = max(S(T )− 40, 0),

and the value of the portfolio at maturity is

V (T ) = C1(T )− 2C2(T ) + C3(T ).

Depending on the values of the spot S(T ) of the underlying asset at
maturity, the value V (T ) of the portfolio at time T is given below:

S(T ) < 30 30 < S(T ) < 35 35 < S(T ) < 40 40 < S(T )
C1(T ) 0 S(T )− 30 S(T )− 30 S(T )− 30
C2(T ) 0 0 S(T )− 35 S(T )− 35
C3(T ) 0 0 0 S(T )− 40
V (T ) 0 S(T )− 30 40− S(T ) 0

Problem 19: Draw the payoff diagram at maturity of a bull spread with a
long position in a call with strike 30 and short a call with strike 35, and of
a bear spread with long a put of strike 20 and short a put of strike 15.

Solution: The payoff of the bull spread at maturity T is

V1(T ) = max(S(T )− 30, 0) − max(S(T )− 35, 0).

Depending on the value of the spot price S(T ), the value of the bull spread
at maturity T is

S(T ) < 30 30 < S(T ) < 35 35 < S(T )
V1(T ) 0 S(T )− 30 5

The value of the bear spread at maturity T is

V2(T ) = max(20− S(T ), 0) − max(15− S(T ), 0),

which can be written in terms of the value of S(T ) as
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S(T ) < 15 15 < S(T ) < 20 20 < S(T )
V2(T ) 5 20− S(T ) 0

A trader takes a long position in a bull spread if the underlying asset is
expected to appreciate in value, and takes a long position in a bear spread
if the value of the underlying asset is expected to depreciate. �

Problem 20: The prices of three call options with strikes 45, 50, and 55, on
the same underlying asset and with the same maturity, are $4, $6, and $9,
respectively. Create a butterfly spread by going long a 45–call and a 55–call,
and shorting two 50–calls. What are the payoff and the P&L at maturity
of the butterfly spread? When would the butterfly spread be profitable?
Assume, for simplicity, that interest rates are zero.

Solution: The payoff V (T ) of the butterfly spread at maturity is

V (T ) =

⎧⎪⎨
⎪⎩

0, if S(T ) ≤ 45;
S(T )− 45, if 45 < S(T ) ≤ 50;
55− S(T ), if 50 < S(T ) < 55;

0, if 55 ≤ S(T ).

The cost to set up the butterfly spread is

$4− $12 + $9 = $1.

The P&L at maturity is equal to the payoff V (T ) minus the future value at
time T of $1, the setup cost. Since interest rates are zero, the future value
of $1 is $1, and we conclude that

P&L(T ) =

⎧⎪⎨
⎪⎩

−1, if S(T ) ≤ 45;
S(T )− 46, if 45 < S(T ) ≤ 50;
54− S(T ), if 50 < S(T ) < 55;
−1, if 55 ≤ S(T ).

The butterfly spread will be profitable if 46 < S(T ) < 54, i.e., if the spot
price at maturity of the underlying asset will be between $46 and $54.

If r �= 0, it follows similarly that the butterfly spread is profitable if

45 + erT < S(T ) < 55− erT . �

Problem 21: Which of the following two portfolios would you rather hold:
• Portfolio 1: Long one call option with strike K = X − 5 and long one call
option with strike K = X + 5;
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• Portfolio 2: Long two call options with strike K = X?
(All options are on the same asset and have the same maturity.)

Solution: Note that being long Portfolio 1 and short Portfolio 2 is equivalent
to being long a butterfly spread, and therefore will always have positive (or
rather nonnegative) payoff at maturity. Therefore, if you are to assume a
position in either one of the portfolios (not to purchase the portfolios), you
are better off owning Portfolio 1, since its payoff at maturity will always be
at least as big as the payoff of Portfolio 2.

To see this rigorously, denote by V1(t) and V2(t) the value of Portfolio 1
and of Portfolio 2, respectively. Let V (t) = V1(t) − V2(t) be the value of a
long position in Portfolio 1 and a short position in Portfolio 2.

The value V (T ) of the portfolio at the maturity T of the options is given
by

V (T ) = V1(T )− V2(T )

= max(S(T )− (X − 5), 0) + max(S(T )− (X + 5), 0)

− 2 max(S(T )−X, 0).

It is easy to see that V (T ) ≥ 0 for any value of S(T ), since V (T ) in terms
of S(T ) is given in the table below:

V (T )
S(T ) < X − 5 0

X − 5 < S(T ) < X S(T )− (X − 5)
X < S(T ) < X + 5 (X + 5)− S(T )

X + 5 < S(T ) 0

Problem 22: A stock with spot price $42 pays dividends continuously at
a rate of 3%. The four months put and call options with strike 40 on this
asset are trading at $2 and $4, respectively. The risk-free rate is constant
and equal to 5% for all times. Show that the Put-Call parity is not satisfied
and explain how would you take advantage of this arbitrage opportunity.

Solution: The following values are given: S = 42; K = 40; T = 1/3;
r = 0.05; q = 0.03; P = 2; C = 4.

The Put–Call parity is not satisfied, since

P + Se−qT − C = 39.5821 > 39.3389 = Ke−rT . (1.27)

Therefore, a riskless profit can be obtained by “buying low and selling
high”, i.e., by selling the portfolio on the left hand side of (1.27) and buying
the portfolio on the right hand side of (1.27) (which is cash only). The riskless
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profit at maturity will be the future value at time T of the mispricing from
the Put–Call parity, i.e.,

(39.5821− 39.3389)erT = 0.2473. (1.28)

To show this, start with no money and sell one put option, short e−qT

shares, and buy one call option. This will generate the following cash amount:

P + Se−qT − C = 39.5821,

since shorting the shares means that e−qT shares are borrowed and sold on
the market for cash. (The short will be closed at maturity T by buying
shares on the market and returning them to the borrower; see below for
more details.)

At time 0, the portfolio consists of the following positions:
• short one put option with strike K and maturity T;
• short e−qT shares;
• long one call option with strike K and maturity T;
• cash: +$39.5821.

The initial value of the portfolio is zero, since no money were invested:

V (0) = − P (0)− S(0)e−qT + C(0) + 39.5821 = 0.

Note that by shorting the shares you are responsible for paying the ac-
crued dividends. Assume that the dividend payments are financed by short-
ing more shares of the underlying asset and using the cash proceeds to make
the dividend payments. Then, the short position in e−qT shares at time 0
will become a short position in one share3 at time T .

The value of the portfolio at maturity is

V (T ) = − P (T )− S(T ) + C(T ) + 39.5821erT .

As shown when proving the Put–Call parity,

P (T )+S(T )−C(T ) = max(K−S(T ), 0)+S(T )−max(S(T )−K, 0) = K,

regardless of the value S(T ) of the underlying asset at maturity.
Therefore,

V (T ) = −(P (T ) + S(T )− C(T )) + 39.5821erT

= −K + 39.5821erT = − 40 + 40.2473 = 0.2473.

This value represents the risk–free profit made by exploiting the discrep-
ancy from the Put–Call parity, and is the same as the future value at time
T of the mispricing from the Put–Call parity; cf. (1.28). �

3This is similar to converting a long position in e−qT shares at time 0 into a long position
in one share at time T , through continuous purchases of (fractions of) shares using the
dividend payments, which is a more intuitive process.
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Problem 23: The bid and ask prices for a six months European call option
with strike 40 on a non–dividend–paying stock with spot price 42 are $5
and $5.5, respectively. The bid and ask prices for a six months European
put option with strike 40 on the same underlying asset are $2.75 and $3.25,
respectively. Assume that the risk free rate is equal to 0. Is there an arbitrage
opportunity present?

Solution: For r = 0, the Put–Call parity becomes P + S −C = K, which in
this case can be written as C − P = 2.

Thus, an arbitrage occurs if C−P can be “bought” for less than $2 (i.e.,
if a call option is bought and a put option is sold for less than $2), or if
C − P can be “sold” for more than $2 (i.e., if a call option can be sold and
a put option can be bought for more than $2).

From the bid and ask prices, we find that the call can be bought for
$5.5 and the put can be sold for $2.75. Then, C − P can be “bought” for
$5.5-$2.75=$2.75, which is more than $2. Therefore, no risk-free profit can
be achieved this way.

Also, a call can be sold for $5 and a put can be bought for $3.25. There-
fore, C − P can be “sold” for $5-$3.25=$1.75, which is less than $2. Again,
no risk-free profit can be achieved. �

Problem 24: Denote by Cbid and Cask, and by Pbid and Pask, respectively,
the bid and ask prices for a plain vanilla European call and for a plain
vanilla European put option, both with the same strike K and maturity T ,
and on the same underlying asset with spot price S and paying dividends
continuously at rate q. Assume that the risk–free interest rates are constant
equal to r.

Find necessary and sufficient no–arbitrage conditions for Cbid, Cask, Pbid,
and Pask.

Solution: Recall the Put–Call parity

C − P = Se−qT −Ke−rT ,

where the right hand represents the value of a forward contract on the un-
derlying asset with strike K.

An arbitrage would exist in one of the following two instances:

• if the purchase price of a long call short put portfolio, i.e., Cask−Pbid were
less than the value Se−qT −Ke−rT of the forward contract, i.e., if

Cask − Pbid < Se−qT −Ke−rT ;

• if the selling price of a long call short put portfolio, i.e., Cbid − Pask were
greater than the value Se−qT −Ke−rT of the forward contract, i.e., if

Cbid − Pask > Se−qT −Ke−rT .
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We conclude that there is no–arbitrage directly following from the Put–
Call parity if and only if

Cbid − Pask ≤ Se−qT −Ke−rT ≤ Cask − Pbid. (1.29)

Note that the no–arbitrage condition (1.29) can also be written as

Cbid − Pask ≤ F ≤ Cask − Pbid,

where F = Se−qT −Ke−rT is the value of a forward contract with delivery
price K and maturity T on the same underlying asset. �

Problem 25: You expect that an asset with spot price $35 will trade in
the $40–$45 range in one year. One year at–the–money calls on the asset
can be bought for $4. To act on the expected stock price appreciation, you
decide to either buy the asset, or to buy ATM calls. Which strategy is better,
depending on where the asset price will be in a year?

Solution: For every $1000 invested, the payoff in one year of the first strategy,
i.e., of buying the asset, is

V1(T ) =
1000

35
S(T ),

where S(T ) is the spot price of the asset in one year.
For every $1000 invested, the payoff in one year of the second strategy,

i.e., of investing everything in buying call options, is

V2(T ) =
1000

4
max(S(T )− 35, 0)

=

{
1000

4 (S(T )− 35), if S(T ) ≥ 35;
0, if S(T ) < 35.

If S(T ) is less than $35, the calls expire worthless and the speculative
strategy of investing everything in call options will lose all the money invested
in it, while the first strategy of buying the asset will not lose all its value.
However, investing everything in the call options is very profitable if the
asset appreciates in value, i.e., is S(T ) is significantly larger than $35. The
breakeven point of the two strategies, i.e., the spot price at maturity of the
underlying asset where both strategies have the same payoff is $39.5161,
since

1000

35
S(T ) =

1000

4
(S(T )− 35) ⇐⇒ S(T ) = 39.5161.

If the price of the asset will, indeed, be in the $40–$45 range in one year,
then buying the call options is the more profitable strategy. �
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Problem 26: Create a portfolio with the following payoff at time T :

V (T ) =

{
2S(T ), if S(T ) < 20;

60− S(T ), if 20 ≤ S(T ) < 40;
S(T )− 20, if 40 ≤ S(T ),

(1.30)

where S(T ) is the spot price at time T of a given asset. Use plain vanilla
options with maturity T as well as cash positions and positions in the asset
itself. Assume, for simplicity, that the asset does not pay dividends and that
interest rates are zero.

Solution: Using plain vanilla options, cash, and the underlying asset the
payoff V (T ) can be replicated in different ways.

One way is to use the underlying asset, calls with strike 20, and calls with
strike 40.

First of all, a portfolio with a long position in two units of the underlying
asset has value 2S(T ) at maturity, when S(T ) < 20.

To replicate the portfolio payoff 60 − S(T ) when 20 ≤ S(T ) < 40, note
that

60− S(T ) = 2S(T ) + 60− 3S(T ) = 2S(T ) − 3(S(T )− 20).

This is equivalent to a long position in two units of the underlying asset and
a short position in three calls with strike 20.

To replicate the portfolio payoff S(T )− 20 when 40 ≤ S(T ), note that

S(T )−20 = 60−S(T )+2S(T )−80 = 2S(T ) − 3(S(T )−20) + 2(S(T )−40).

This is equivalent to a long position in two units of the underlying asset, a
short position in three calls with strike 20, and a long position in two calls
with strike 40.

Summarizing, the replicating portfolio is made of

• long two units of the asset;
• short 3 call options with strike K = 20 on the asset;
• long 2 call options with strike K = 40 on the asset.

We check that the payoff of this portfolio at maturity, i.e.,

V1(T ) = 2S(T )− 3 max(S(T )− 20, 0) + 2 max(S(T )− 40, 0) (1.31)

is the same as the payoff from (1.30):
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V1(T )
S(T ) < 20 2S(T )

20 ≤ S(T ) < 40 2S(T )− 3(S(T )− 20) = 60− S(T )
40 ≤ S(T ) 60− S(T ) + 2(S(T )− 40) = S(T )− 20

As a consequence of the Put–Call parity, it follows that the payoff V (T )
from (1.30) can also be synthesized using put options. If the asset does not
pay dividends and if interest rates are zero, then, from the Put–Call parity,
it follows that

C = P + S −K.

Denote by C20 and P20, and by C40 and P40, the values of the call and
put options with strikes 20 and 40, respectively.

Then, the replicating portfolio with payoff at maturity given by (1.31)
can be written as

V = 2S − 3C20 + 2C40. (1.32)

To synthesize a short position in three calls with strike 20, note that

−3C20 = − 3P20 − 3S + 60, (1.33)

which is equivalent to taking a short position in three units of the underlying
asset, taking a short position in three put options with strike 20, and being
a long $60.

Similarly, to synthesize a long position in two calls with strike 40, note
that

2C40 = 2P40 + 2S − 80, (1.34)

which is equivalent to a borrowing $80, taking a long position in two units
of the underlying asset, and taking a long position in two put options with
strike 40.

Using (1.33) and (1.34), we obtain that the payoff at maturity given
by (1.31) can be replicated using the following portfolio consisting of put
options, cash, and the underlying asset:

V = 2S − 3C20 + 2C40

= 2S − 3P20 − 3S + 60 + 2P40 + 2S − 80

= S − 3P20 + 2P40 − 20. (1.35)

The positions of the replicating portfolio (1.35) can be summarized as follows:

• long one unit of the asset;
• short $20 cash;
• short 3 put options with strike K = 20 on the asset;
• long 2 put options with strike K = 40 on the asset.
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We check that the payoff of this portfolio at maturity, i.e.,

V2(T ) = S(T )− 20− 3 max(20− S(T ), 0) + 2 max(40− S(T ), 0)

is the same as the payoff from (1.30):

V1(T )
S(T ) ≤ 20 S(T )− 20− 3(20− S(T )) + 2(40− S(T )) = 2S(T )

20 < S(T ) ≤ 40 S(T )− 20 + 2(40− S(T )) = 60− S(T )
40 < S(T ) S(T )− 20

If the asset pays dividends continuously at rate q and if interest rates are
constant and equal to r, in order to obtain the same payoffs at maturity, the
asset positions in the two portfolios must be adjusted as follows:

The first replicating portfolio will be made of the following positions:
• long 2e−qT units of the asset;
• short 3 call options with strike K = 20 on the asset;
• long 2 call options with strike K = 40 on the asset.

The second replicating portfolio will be made of the following positions:
• long e−qT units of the asset;
• short $20e−rT cash;
• short 3 put options with strike K = 20 on the asset;
• long 2 put options with strike K = 40 on the asset.

Note that any piecewise linear payoff of a single asset can be synthesized,
in theory, by using plain vanilla options, cash and asset positions. �

Problem 27: A derivative security pays a cash amount c if the spot price
of the underlying asset at maturity is between K1 and K2, where 0 < K1 <
K2, and expires worthless otherwise. How do you synthesize this derivative
security (i.e., how do you recreate its payoff almost exactly) using plain
vanilla call options?

Solution: The payoff of the derivative security is

V (T ) =

{
0, if S(T ) ≤ K1;
c, if K1 < S(T ) < K2;
0, if K2 ≤ S(T ).

Since V (T ) is discontinuous, it cannot be replicated exactly using call op-
tions, whose payoffs are continuous.
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We approximate the payoff V (T ) of the derivative security by the follow-
ing payoff

Vε(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if S(T ) < K1 − ε;
c
ε(S(T )− (K1 − ε)), if K1 − ε ≤ S(T ) ≤ K1;

c, if K1 < S(T ) < K2;
c− c

ε(S(T )−K2), if K2 ≤ S(T ) ≤ K2 + ε;
0, if K2 + ε < S(T ).

(1.36)

Note that V (T ) = Vε(T ) unless the value S(T ) of the underlying asset at
maturity is either between K1 − ε and K1, or between K2 and K2 + ε.

The payoff Vε(T ) can be realized by going long c/ε bull spreads with
strikes K1 − ε and K1, and shorting c/ε bull spreads with strikes K2 and
K2 + ε.

The payoff V (T ) of the given derivative security can be synthesized by
taking the following positions:
• long c/ε calls with strike K1 − ε;
• short c/ε calls with strike K1;
• short c/ε calls with strike K2;
• long c/ε calls with strike K2 + ε.

It is easy to see that the payoff Vε(T ) is the same as in (1.36):

Vε(T )
S(T ) < K1 − ε 0

K1 − ε ≤ S(T ) < K1
c
ε(S(T )− (K1 − ε))

K1 ≤ S(T ) < K2
c
ε(S(T )− (K1 − ε))− c

ε(S(T )−K1)) = c
K2 ≤ S(T ) < K2 + ε c− c

ε(S(T )−K2)
K2 + ε < S(T ) c− c

ε(S(T )−K2) + c
ε(S(T )− (K2 + ε)) = 0

Problem 28: Call options with strikes 100, 120, and 130 on the same
underlying asset and with the same maturity are trading for 8, 5, and 3,
respectively (there is no bid–ask spread). Is there an arbitrage opportunity
present? If yes, how can you make a riskless profit?

Note: A solution to this problem based on the convexity of the payoff of call
and put options is discussed in section 1.3 at the end of this chapter.

Solution: For an arbitrage opportunity to be present, there must be a port-
folio made of the three options with nonnegative payoff at maturity and with
a negative cost of setting up.

Let K1 = 100 < K2 = 120 < K3 = 130 be the strikes of the options.
Denote by x1, x2, x3 the options positions (which can be either negative or
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positive) at time 0. Then, at time 0, the portfolio is worth

V (0) = x1C1(0) + x2C2(0) + x3C3(0)

At maturity T , the value of the portfolio will be

V (T ) = x1C1(T ) + x2C2(T ) + x3C3(T )

= x1 max(S(T )−K1, 0) + x2 max(S(T )−K2, 0)

+ x3 max(S(T )−K3, 0),

respectively.
Depending on the value S(T ) of the underlying asset at maturity, the

value V (T ) of the portfolio is as follows:

V (T )
S(T ) < K1 0

K1 < S(T ) < K2 x1S(T )− x1K1
K2 < S(T ) < K3 (x1 + x2)S(T )− x1K1 − x2K2

K3 < S(T ) (x1 + x2 + x3)S(T )− x1K1 − x2K2 − x3K3

Note that V (T ) is nonnegative when S(T ) ≤ K2 only if a long position is
taken in the option with strike K1, i.e., if x1 ≥ 0. The payoff V (T ) decreases
when K2 < S(T ) < K3, accounting for the short position in the two call
options with strike K2, and then increases when S(T ) ≥ K3.

We conclude that V (T ) ≥ 0 for any value of S(T) if and only if x1 ≥ 0,
if the value of the portfolio when S(T ) = K3 is nonnegative, i.e., if (x1 +
x2)K3 − x1K1 − x2K2 ≥ 0, and if x1 + x2 + x3 ≥ 0.

Thus, an arbitrage exists if and only if the values C1(0), C2(0), C3(0) are
such that we can find x1, x2, and x3 with the following properties:

x1C1(0) + x2C2(0) + x3C3(0) < 0;

x1 ≥ 0;

(x1 + x2)K3 − x1K1 − x2K2 ≥ 0;

x1 + x2 + x3 ≥ 0.

For C1(0) = 8, C2(0) = 5, C3(0) = 3 and K1 = 100, K2 = 120, K3 = 130,
the problem becomes finding x1 ≥ 0, and x2 and x3 such that

8x1 + 5x2 + 3x3 < 0; (1.37)

30x1 + 10x2 ≥ 0; (1.38)

x1 + x2 + x3 ≥ 0. (1.39)

(For these option prices, arbitrage will be possible since the middle option is
overpriced relative to the other two options.)
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The easiest way to find values of x1, x2, and x3 satisfying the constraints
above is to note that arbitrage can occur for a portfolio with long positions in
the options with lowest and highest strikes, and with a short position in the
option with middle strike (note the similarity to butterfly spreads). Then,
choosing x3 = −x1− x2 would be optimal; cf. (1.39). The constraints (1.37)
and (1.38) become

5x1 + 2x2 < 0;

3x1 + x2 ≥ 0.

These constraints are satisfied, e.g., for x1 = 1 and x2 = −3, which
corresponds to x3 = 2.

Buying one option with strike 100, selling three options with strike 120,
and buying two options with strike 130 will generate a positive cash flow of
$1, and will result in a portfolio that will not lose money, regardless of the
value of the underlying asset at the maturity of the options. �

Problem 29: Call options on the same underlying asset and with the same
maturity, with strikes K1 < K2 < K3, are trading for C1, C2 and C3, re-
spectively (no Bid–Ask spread), with C1 > C2 > C3. Find necessary and
sufficient conditions on the prices C1, C2 and C3 such that no–arbitrage exists
corresponding to a portfolio made of positions in the three options.

Solution: An arbitrage exists if and only if a no–cost portfolio can be set up
with non–negative payoff at maturity regardless of the price of the underlying
asset at maturity, and such that the probability of a strictly positive payoff
is greater than 0.

Consider a portfolio made of positions in the three options with value 0
at inception, and let xi > 0 be the size of the portfolio position in the option
with strike Ki, for i = 1 : 3. Let S = S(T ) be the value of the underlying
asset at maturity. For no–arbitrage to occur, there are three possibilities:

Portfolio 1: Long the K1–option, short the K2–option, long the K3–option.

Arbitrage exists if we can find xi > 0, i = 1 : 3, such that

x1C1 − x2C2 + x3C3 = 0; (1.40)

x1(S −K1)− x2(S −K2) + x3(S −K3) ≥ 0, ∀ S ≥ 0. (1.41)

We note that (1.41) holds if and only if the following two conditions are
satisfied:

x1 − x2 + x3 ≥ 0; (1.42)

x1(K3 −K1)− x2(K3 −K2) ≥ 0. (1.43)
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We solve (1.40) for x3 and obtain

x3 = x2
C2

C3
− x1

C1

C3
. (1.44)

Since we assumed that x3 > 0, the following condition must also be satisfied:

x2

x1
>

C1

C2
. (1.45)

Recall that C1 > C2 > C3. Using the value of x3 from (1.44), it follows
that (1.42) and (1.43) hold true if and only if

x2

x1
≥ C1 − C3

C2 − C3
; (1.46)

x2

x1
≤ K3 −K1

K3 −K2
. (1.47)

Also, note that if (1.46) holds true, then (1.45) is satisfied as well, since

C1 − C3

C2 − C3
>

C1

C2
.

We conclude that arbitrage happens if and only if we can find x1 > 0 and
x2 > 0 such that (1.46) and (1.47) are simultaneously satisfied. Therefore,
no–arbitrage exists if and only if

K3 −K1

K3 −K2
<

C1 − C3

C2 − C3
. (1.48)

Portfolio 2: Long the K1–option, short the K2–option, short the K3–option.

Arbitrage exists if we can find xi > 0, i = 1 : 3, such that

x1C1 − x2C2 − x3C3 = 0; (1.49)

x1(S −K1)− x2(S −K2)− x3(S −K3) ≥ 0, ∀ S ≥ 0. (1.50)

The inequality (1.50) holds if and only if the following two conditions are
satisfied:

x1 − x2 − x3 ≥ 0; (1.51)

x1(K3 −K1)− x2(K3 −K2) ≥ 0. (1.52)

However, (1.49) and (1.51) cannot be simultaneously satisfied. Since C1 >
C2 > C3, it is easy to see that

x1 = x2
C2

C1
− x3

C3

C1
< x2 + x3.
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In other words, no arbitrage can be obtained by being long the option
with strike K1 and short the options with strikes K2 and K3.

Portfolio 3: Long the K1–option, long the K2–option, short the K3–option.

Arbitrage exists if we can find xi > 0, i = 1 : 3, such that

x1C1 + x2C2 − x3C3 = 0; (1.53)

x1(S −K1) + x2(S −K2)− x3(S −K3) ≥ 0, ∀ S ≥ 0. (1.54)

The inequality (1.54) holds if and only if

x1 + x2 − x3 ≥ 0. (1.55)

It is easy to see that (1.53) and (1.55) cannot be simultaneously satisfied:

x3 = x1
C1

C3
+ x2

C2

C3
> x1 + x2,

since C1 > C2 > C3.
Therefore, no arbitrage can be obtained by being long the options with

strikes K1 and K2 and short the option with strike K3.

We conclude that (1.48), i.e.,

K3 −K1

K3 −K2
<

C1 − C3

C2 − C3
(1.56)

is the only condition required for no–arbitrage. �

Problem 30: The risk free rate is 8% compounded continuously and the
dividend yield of a stock index is 3%. The index is at 12,000 and the futures
price of a contract deliverable in three months is 12,100. Is there an arbitrage
opportunity, and how do you take advantage of it?

Solution: The arbitrage–free futures price of the futures contract is

12000e(r−q)T = 12000e(0.08−0.03)/4 = 12150.94 > 12100.

Therefore, the futures contract is underpriced and should be bought while
hedged statically by shorting e−qT = 0.9925 units of index for each futures
contract that is sold.

At maturity, the asset is bought for 12100 and the short is closed (the
dividends paid on the short position increase the size of the short position
to 1 unit of the index). The realized gain is the interest accrued on the cash
resulting from the short position minus 12100, i.e.,

e0.08/4 (e−0.03/4 · 12000) − 12100 = 50.94. �


