
Chapter 1

Vectors and matrices.

Column vectors and row vectors. Column form and row form of a matrix.

Column-based and row-based matrix–vector and matrix–matrix multiplication.

Covariance matrix computation from time series data.

Matrix rank. Nullspace and range of a matrix. Linear independence.

A one period market model example.

Nonsingular matrices and the inverse of a matrix.

Diagonal matrices. Matrix multiplication by diagonal matrices.

Converting between covariance and correlation matrices.

Correlation matrix computation from time series data.

Lower and upper triangular matrices. Tridiagonal matrices.

1.1 Column and row vectors. Column form and row
form of a matrix.

An n–dimensional vector v ∈ R
n is denoted by v = (vi)i=1:n and has n components

vi ∈ R, for i = 1 : n.1

The vector v = (vi)i=1:n is a column vector of size n if

v =

0BBB@
v1

v2

...
vn

1CCCA . (1.1)

A column vector is also called an n× 1 vector.

1The vectors and matrices considered here have entries which are real numbers. While complex
numbers will occur naturally (for example, eigenvalues of a matrices with real entries may be
complex numbers), the presentation and the notations in this book will be specific to vectors and
matrices with real entries.
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2 CHAPTER 1. VECTORS AND MATRICES

The vector vt is a row vector2 of size n if

vt = (v1 v2 . . . vn). (1.2)

A row vector is also called an 1× n vector.
Unless otherwise specified, a vector v denoted by v = (vi)i=1:n is a column vector.

An m × n matrix A = (A(j, k))j=1:m,k=1:n is a linear operator from R
n to R

m,
i.e., A : R

n → R
m. The matrix A has m rows and n columns. Rather than using

the entry by entry notation above for the matrix A, we will use either a column–
based notation (more often), or a row–based notation, both being better suited for
numerical computations.

The column form of the matrix A is

A = (a1 | a2 | . . . | an) = col (ak)k=1:n , (1.3)

where ak is the k-th column3 of A, k = 1 : n.

The row form of the matrix A is

A =

0BBBBBBBB@

r1

−−
r2

−−
...
−−
rm

1CCCCCCCCA
= row (rj)j=1:m , (1.4)

where rj is the j-th row4 of A, j = 1 : m.

Row Vector – Column Vector multiplication:5

Let v = (vi)i=1:n be a column vector of size n, and let wt = (w1 w2 . . . wn) be a
row vector of size n. Then,

wtv =

nX
i=1

wivi. (1.5)

Column Vector – Row Vector multiplication:
Let v = (vj)j=1:m be a column vector of size m, and let wt = (w1 w2 . . . wn) be a
row vector of size n. Then, vwt is an m× n matrix with the following entries:

(vwt)(j, k) = vjwk, ∀ j = 1 : m, k = 1 : n. (1.6)

Matrix – Column Vector multiplication:
Let A = col (ak)k=1:n be an m × n matrix given by the column form (1.3), and let

2The notation vt emphasizes the fact that a row vector is the transpose of a column vector;
see also Definition 1.1.

3For every k = 1 : n, the column vector ak is given by ak = (A(j, k))j=1:m.
4For every j = 1 : m, the row vector rj is given by rj = (A(j, k))k=1:n.
5Formula (1.5) is the same as formula (5.2) for the Euclidean inner product of two vectors.
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v = (vk)k=1:n be a column vector of size n given by (1.1). Then,

Av =

nX
k=1

vkak. (1.7)

In other words, the result of the multiplication of the column vector v by the matrix
A is a column vector Av which is the linear combination6 of the columns of A with
coefficients equal to the corresponding entries of v.

If A = row (rj)j=1:m is the row form of A, then the j–th entry of the m × 1 column
vector Av is

(Av)(j) = rjv, ∀ 1 ≤ j ≤ m. (1.8)

Row Vector – Matrix multiplication:
Let A = row (rj)j=1:m be an m × n matrix given by the row form (1.4), and let

wt = (w1 w2 . . . wm) be a row vector of size m. Then,

wtA =
mX

j=1

wjrj . (1.9)

In other words, the result of the multiplication of the row vector wt by the matrix A
(from the right) is a row vector wtA which is the linear combination of the rows of
A with coefficients equal to the corresponding entries of wt.

If A = col (ak)k=1:n is the column form of A, then the k–th entry of the 1 × n row
vector wtA is

(wtA)(k) = wtak , ∀ 1 ≤ k ≤ n. (1.10)

Matrix – Matrix multiplication:
(i) Let A be an m×n matrix, and let B be an n×p matrix given by B = col (bk)k=1:p.
Then, AB is the m × p matrix given by

AB = col (Abk)k=1:p = (Ab1 | Ab2 | . . . | Abp) . (1.11)

The result of multiplying the matrices A and B is a matrix whose columns are the
columns of B multiplied by the matrix A.

(ii) Let A be an m × n matrix given by A = row (rj)j=1:m, and let B be an n × p
matrix. Then, AB is the m× p matrix given by

AB = row (rjB)j=1:m =

0BBBBBBBB@

r1B
−−
r2B
−−
...
−−
rmB

1CCCCCCCCA
. (1.12)

6A linear combination of the vectors w1, w2, . . . , wn is any sum of these vectors multiplied by
real coefficients, i.e., c1w1 + c2w2 + . . . + cnwn, where ci ∈ R, i = 1 : n; see also Definition 1.5.
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The result of multiplying the matrices A and B is a matrix whose rows are the rows
of A multiplied by the matrix B.

(iii) Let A be an m × n matrix given by A = row (rj)j=1:m, and let B be an n × p
matrix given by B = col (bk)k=1:p. Then, AB is the m × p matrix whose entries are
given by

(AB)(j, k) = rjbk, ∀ j = 1 : m, k = 1 : p. (1.13)

Note that, since rj is a 1× n row vector and bk is a n× 1 column vector, it follows
from (1.5) that the multiplication from (1.13) can be performed.

Matrix – Matrix – Matrix multiplication:
Let A be an m×n matrix given by A = row (rj)j=1:m, let B be an n× p matrix, and
let C be a p× l matrix given by C = col (ck)k=1:l. Then, ABC is the m × l matrix
whose entries are given by

(ABC)(j, k) = rjBck, ∀ j = 1 : m, k = 1 : l. (1.14)

Note that (1.14) follows from (1.13), since BC = col (Bck)k=1:l; cf. (1.11).
Note that matrix multiplication is associative, i.e., ABC = (AB)C = A(BC).

We emphasize again that we almost exclusively think of a matrix as either a col-
lection of column vectors, or as a collection of row vectors, rather than as a collection
of individual entries. For numerical purposes, this is an efficient way to implement
matrices. Also, linear algebra proofs using the column form or the row form of a
matrix are more insightful and more compact than proofs using individual entries of
a matrix. Most of the proofs from this book use a vector–based approach.

Definition 1.1. The transpose of an n×1 column vector v = (vi)i=1:n is the 1×n row
vector vt = (v1 v2 . . . vn). The transpose of an 1× n row vector r = (r1 r2 . . . rn)
is the n× 1 column vector rt = (ri)i=1:n.

Note that
(cv)t = cvt, ∀ v ∈ R

n, c ∈ R. (1.15)

Definition 1.2. The transpose matrix At of an m× n matrix A is an n×m matrix
given by

At(k, j) = A(j, k), ∀ k = 1 : n, j = 1 : m. (1.16)

Transposing a matrix switches the column form of the matrix to a row form, and
the row form of the matrix to a column form as follows:

A = col (ak)k=1:n ⇐⇒ At = row
`
at

k

´
k=1:n

; (1.17)

A = row (rj)j=1:m ⇐⇒ At = col
`
rt

j

´
j=1:m

. (1.18)

From (1.16), we find that, for any matrix A,

(At)t = A, (1.19)

and, for any matrices A and B of the same size,

(A + B)t = At + Bt. (1.20)
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Lemma 1.1. Let A be an m×n matrix and let v be a column vector of size n. Then,

(Av)t = vtAt. (1.21)

Proof. Let A = col (ak)k=1:n and v = (vi)i=1:n. Then, Av =
Pn

i=1 viai, and

(Av)t =

 
nX

i=1

viai

!t

=
nX

i=1

(viai)
t =

nX
i=1

via
t
i, (1.22)

since vi ∈ R; see (1.15).
Note that At = row

`
at

k

´
k=1:n

; cf. (1.17). Then, from (1.9), it follows that

vtAt =

nX
i=1

via
t
i. (1.23)

From (1.22) and (1.23), we conclude that (Av)t = vtAt.

It is very important to note that the transpose of the product of two matrices is
not the product of the transposes of the two matrices,7 i.e., (AB)t �= AtBt. Instead,
the following result holds:8

Lemma 1.2. Let A be an m× n matrix and let B be an n× p matrix. Then,

(AB)t = BtAt. (1.24)

Proof. Recall from (1.11) that, if B = col (bk)k=1:p, then AB = col (Abk)k=1:p. Thus,
from (1.17), we obtain that

(AB)t =
“
col (Abk)k=1:p

”t

= row
`
(Abk)t´

k=1:p
.

Using (1.21), (1.12), and the fact that Bt = row
`
bt
k

´
k=1:p

, see (1.17) we conclude

that

(AB)t = row
`
bt
kAt´

k=1:p
=
“
row

`
bt
k

´
k=1:p

”
At = BtAt.

Definition 1.3. A matrix with the same number of rows and columns is called a
square matrix.

Note that an n× n square matrix is also called a square matrix of size n.

Definition 1.4. A square matrix is symmetric if and only if the matrix and its
transpose are the same. In other words, a square matrix A of size n is symmetric if
and only if A = At, i.e.,

A(j, k) = A(k, j), ∀ 1 ≤ j < k ≤ n;

7A similar property holds for inverses of matrices, i.e., (AB)−1 �= A−1B−1 . Moreover,

(AB)−1 = B−1A−1; see Lemma 1.7 for details.
8The result of Lemma 1.2 extends as follows:

`Qp
i=1 Ai

´t
=

Qp
i=1 At

p+1−i . A proof can be
given by induction; see an exercise at the end of this chapter.
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The product of two symmetric matrices is not necessarily a symmetric matrix, as
seen in the example below.

Example: Let A =

„
1 2
2 1

«
and B =

„
2 1
1 0

«
be two symmetric matrices.

Then,

AB =

„
4 1
5 2

«
�= (AB)t =

„
4 5
1 2

«
�

The identity matrix,9 denoted by I , is a square matrix with entries equal to 1 on
the main diagonal and equal to 0 everywhere else, i.e.,

I =

0BBB@
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

1CCCA .

The k-th column of the identity matrix is denoted by ek. Thus,

ek(i) = 0, for 1 ≤ i �= k ≤ n and ek(k) = 1. (1.25)

The column form and row form of the identity matrix I are, respectively,

I = col (ek)k=1:n ; I = row
`
et

k

´
k=1:n

;

cf. (1.17), since I = It.

Lemma 1.3. (i) Let A = col (ak)k=1:n be an m×n matrix. If ek is the k-th column
of the n× n identity matrix, then

Aek = ak, ∀ k = 1 : n, (1.26)

and therefore AI = A.

(ii) Let A = row (rj)j=1:m be an m× n matrix. If ej is the j-th column of the m×m
identity matrix, then

et
jA = rj , ∀ j = 1 : m, (1.27)

and therefore IA = A.

Proof. (i) Let A = col (ak)k=1:n. Recall from (1.25) that ek(k) = 1 and ek(i) = 0,
for i �= k. From (1.7), we obtain that

Aek =

nX
i=1

ek(i)ai = ak . (1.28)

If I = col (ek)k=1:n, it follows from (1.11) and (1.28) that

AI = col (Aek)k=1:n = col (ak)k=1:n = A.

9The n × n identity matrix is sometimes denoted by In. We do not use this notation, but
denote by I identity matrices of any size.
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(ii) Let A = row (rj)j=1:m. Recall from (1.25) that ej(j) = 1 and ej(i) = 0, for i �= j.
From (1.9), we find that

et
jA =

mX
i=1

ej(i)ri = rj . (1.29)

If I = row
`
et

j

´
j=1:m

, it follows from (1.12) and (1.29) that

IA = row
`
et

jA
´

j=1:m
= row (rj)j=1:m = A.

1.1.1 Covariance matrix computation from time series data

Let X1, X2, . . . , Xn be random variables given by time series data at N data points
ti, i = 1 : N . In other words, the values of Xk(ti) are given for all k = 1 : n and
i = 1 : N .

Denote by bμXk the sample mean of the random variable Xk, for k = 1 : n, i.e.,

bμXk =
1

N

NX
i=1

Xk(ti).

The sample covariance matrix bΣX of the n random variables X1, X2, . . . , Xn is
the n× n square matrix with entries

bΣX(j, k) = dcov(Xj , Xk), ∀ 1 ≤ j, k ≤ n, (1.30)

where dcov(Xj , Xk) is the unbiased sample covariance of the random variables Xj and
Xk given by

dcov(Xj , Xk) =
1

N − 1

NX
i=1

(Xj(ti) − bμXj )(Xk(ti) − bμXk). (1.31)

From (1.30) and (1.31), we find that

bΣX(j, k) =
1

N − 1

NX
i=1

(Xj(ti)− bμXj )(Xk(ti)− bμXk). (1.32)

The sample covariance matrix bΣX is symmetric since, from (1.32), it follows that

bΣX(j, k) =
1

N − 1

NX
i=1

(Xj(ti) − bμXj )(Xk(ti) − bμXk)

=
1

N − 1

NX
i=1

(Xk(ti)− bμXk)(Xj(ti)− bμXj )

= bΣX(k, j), ∀ 1 ≤ j, k ≤ n.

The sample covariance matrix can be computed efficiently by using matrix formu-
lation for the time series data Xk(ti), i = 1 : N , k = 1 : n, as shown below.
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Let TX be the corresponding N × n matrix of time series data, i.e., let TX =
(TX(i, k))i=1:N,k=1:n with

TX(i, k) = Xk(ti), ∀ 1 ≤ k ≤ n, 1 ≤ i ≤ N. (1.33)

Let TX be the N × n matrix of time series data where the sample mean of each
random variable is subtracted from the corresponding time series data, i.e., let TX =
(TX(i, k))i=1:N,k=1:n with

TX(i, k) = Xk(ti) − bμXk , ∀ 1 ≤ k ≤ n, 1 ≤ i ≤ N. (1.34)

Then, the sample covariance matrix bΣX can be computed from TX as follows:

bΣX =
1

N − 1
T

t
XTX. (1.35)

For clarity, we include an example below and the proof of (1.35).

Example: The end of day adjusted close prices for Apple, Facebook, Google, Mi-
crosoft, and Yahoo between 1/10/2013 and 1/29/2013 were:

Date AAPL FB GOOG MSFT YHOO
1/10/2013 523.51 31.30 741.48 26.46 18.99
1/11/2013 520.30 31.72 739.99 26.83 19.29
1/14/2013 501.75 30.95 723.25 26.89 19.43
1/15/2013 485.92 30.10 724.93 27.21 19.52
1/16/2013 506.09 29.85 715.19 27.04 20.07
1/17/2013 502.68 30.14 711.32 27.25 20.13
1/18/2013 500.00 29.66 704.51 27.25 20.02
1/22/2013 504.77 30.73 702.87 27.15 19.90
1/23/2013 514.01 30.82 741.50 27.61 20.11
1/24/2013 450.50 31.08 754.21 27.63 20.44
1/25/2013 439.88 31.54 753.67 27.88 20.37
1/28/2013 449.83 32.47 750.73 27.91 20.31
1/29/2013 458.27 30.79 753.68 28.01 19.70

The time series matrix of the daily returns10 of the five stocks above between
1/11/2013 and 1/29/2013 is

TX =

0BBBBBBBBBBBBBBBB@

−0.0061 0.0134 −0.0020 0.0140 0.0158
−0.0357 −0.0243 −0.0226 0.0022 0.0073
−0.0315 −0.0275 0.0023 0.0119 0.0046
0.0415 −0.0083 −0.0134 −0.0062 0.0282
−0.0067 0.0097 −0.0054 0.0078 0.0030
−0.0053 −0.0159 −0.0096 0.0000 −0.0055
0.0095 0.0361 −0.0023 −0.0037 −0.0060
0.0183 0.0029 0.0550 0.0169 0.0106
−0.1236 0.0084 0.0171 0.0007 0.0164
−0.0236 0.0148 −0.0007 0.0090 −0.0034
0.0226 0.0295 −0.0039 0.0011 −0.0029
0.0188 −0.0517 0.0039 0.0036 −0.0300

1CCCCCCCCCCCCCCCCA
,

10Unless specified otherwise, the return between times τ1 and τ2 of an asset with spot prices

S(τ1) and S(τ2) will mean the percentage return, which is
S(τ2)−S(τ1)

S(τ1) .
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where, e.g., the daily return of GOOG on 1/24/2013 is

754.21− 741.50

741.50
= 0.0171 = TX(9, 3),

and the daily return of GOOG on 1/28/2013 is

750.73− 753.67

753.67
= − 0.0039 = TX(11, 3).

The sample means of the returns of the five stocks are −0.0101 (AAPL), −0.0011
(FB), 0.0015 (GOOG), 0.0048 (MSFT), and 0.0032 (YHOO). By subtracting the
sample mean of each column of TX we obtain from (1.34) that

TX =

0BBBBBBBBBBBBBBBB@

0.0040 0.0145 −0.0035 0.0092 0.0126
−0.0255 −0.0232 −0.0242 −0.0025 0.0041
−0.0214 −0.0264 0.0008 0.0071 0.0015
0.0517 −0.0072 −0.0150 −0.0110 0.0250
0.0034 0.0108 −0.0069 0.0030 −0.0002
0.0048 −0.0149 −0.0111 −0.0048 −0.0086
0.0197 0.0371 −0.0039 −0.0084 −0.0092
0.0285 0.0040 0.0534 0.0122 0.0074
−0.1134 0.0095 0.0156 −0.0041 0.0132
−0.0134 0.0159 −0.0022 0.0043 −0.0066
0.0328 0.0306 −0.0054 −0.0037 −0.0061
0.0289 −0.0507 0.0024 −0.0012 −0.0332

1CCCCCCCCCCCCCCCCA
. (1.36)

We now show that the formula (1.35) holds, i.e.,

bΣX =
1

N − 1
T

t
XTX; (1.37)

see also Theorem 7.1 and the proof therein.
From (1.34), we find that, for any 1 ≤ j, k ≤ n,

TX(i, k) = Xk(ti)− bμXk and TX(i, j) = Xj(ti) − bμXj , ∀ i = 1 : N. (1.38)

Then, from (1.32) and (1.38), it follows that

bΣX(j, k) =
1

N − 1

NX
i=1

(Xj(ti)− bμXj )(Xk(ti)− bμXk) (1.39)

=
1

N − 1

NX
i=1

TX(i, j)TX(i, k), ∀ 1 ≤ j, k ≤ n. (1.40)

Let T Xk be the N×1 column vector of the time series data for the random variable
Xk with bμXk subtracted from each data value, i.e.,

T Xk = (Xk(ti)− bμXk)i=1:N .

The time series matrix TX = (TX(i, k))i=1:N,k=1:n has the following column form:

TX = col
`
TXk

´
k=1:n

.
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Moreover,

TX(i, j) = TXj (i) and TX(i, k) = T Xk(i), ∀ 1 ≤ j, k ≤ n, 1 ≤ i ≤ N,

and, from (1.40), we obtain that

bΣX(j, k) =
1

N − 1

NX
i=1

T Xj (i)T Xk(i) (1.41)

=
1

N − 1
T

t
Xj

T Xk , ∀ 1 ≤ j, k ≤ n, (1.42)

where the last equality follows from the row vector–column vector multiplication
formula (1.5).

Since TX = col
`
T Xk

´
k=1:n

, it follows that T
t
X = row

“
T

t
Xj

”
j=1:n

; see (1.17).

From (1.13), we obtain that the (j, k) entry of the matrix T
t
XTX is

(T
t
XTX)(j, k) = T

t
Xj

TXk , ∀ 1 ≤ j, k ≤ n. (1.43)

Then, from (1.42) and (1.43), we conclude that

bΣX(j, k) =
1

N − 1
(T

t
XTX)(j, k), ∀ 1 ≤ j, k ≤ n,

and therefore bΣX =
1

N − 1
T

t
XTX,

which is what we wanted to prove; see (1.37).

Example (continued):

The sample covariance matrix bΣX of the daily returns of AAPL, FB, GOOG,
MSFT, YHOO between 1/11/2013 and 1/29/2013 can be computed using formula
(1.35) with N = 12 and TX given by (1.36). We find that

bΣX =

0BBB@
0.0018 0.0000 −0.0001 0.0000 −0.0001
0.0000 0.0006 0.0001 0.0000 0.0001
−0.0001 0.0001 0.0004 0.0001 0.0000
0.0000 0.0000 0.0001 0.0001 0.0000
−0.0001 0.0001 0.0000 0.0000 0.0002

1CCCA . � (1.44)

More properties of covariance matrices obtained from time series data can be
found in section 7.2.

1.2 Matrix rank, nullspace, and range of a matrix

Definition 1.5. Let w1, w2, . . . , wp be vectors of the same size. The vectors w1,
w2, . . . , wp are linearly independent if and only if the only linear combination of
these vectors that is equal to 0 has all coefficients equal to 0, i.e.,

if

pX
i=1

ciwi = 0, with ci ∈ R, i = 1 : p, then ci = 0, ∀ i = 1 : p.


