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Example: As a simple application of the Linear Transformation Property, let X1,
X2, . . . , Xn be nonconstant random variables, and let Y1, Y2, . . . , Yn be the random
variables given by Yi = diXi, where di �= 0, are constants, for i = 1 : n. Let Y =
(Yi)i=1:n and X = (Xi)i=1:n. Then, Y = DX, and, from the Linear Transformation
Property (7.74), it follows that ΣY = DΣXDt. Since D is a diagonal matrix, Dt = D,
we conclude that

ΣY = DΣXD. � (7.81)

An extension of the Linear Transformation Property can be found below:

Theorem 7.4. Let X1, X2, . . . , Xn be n random variables, and let X = (Xi)i=1:n.
Denote by μX the mean vector of X and by ΣX the covariance matrix of X. Let Y1,
Y2, . . . , Ym be random variables given by

Y = b + MX,

where Y = (Yi)i=1:m, M is an m × n matrix, and b is an m × 1 column vector.
Denote by μY the mean vector of Y and by ΣY the covariance matrix of Y.

Then,
μY = b + MμX and ΣY = MΣXM t. (7.82)

Proof. From the linearity of expectation, it follows that

E[MX] = ME[X] = MμX; (7.83)

see (7.126). Then, from (7.83), we find that

μY = E[Y] = E[b + MX] = b + E[MX] = b + MμX.

Moreover, since b is a constant vector, the covariance matrix of Y = b + MX is
the same as the covariance matrix of MX, and therefore ΣY = ΣMX. Note that
ΣMX = MΣXM t; see (7.75). Thus, we conclude that

ΣY = ΣMX = MΣXM t.

The Linear Transformation Property can be used for generating normal random
variables with a given correlation matrix, which can be subsequently used for Monte
Carlo simulations, see section 7.5, and for establishing that any symmetric positive
semidefinite matrix is the covariance matrix (or the correlation matrix, if the main
diagonal entries are equal to 1) of some random variables; see section 7.4.

7.4 Necessary and sufficient conditions for covariance
and correlation matrices

In Lemma 7.4, we proved that any covariance matrix is symmetric positive semidefi-
nite. We now show, using the Linear Transformation Property, that this is a necessary
and sufficient condition by finding normal random variables with covariance matrix
equal to any given symmetric positive semidefinite matrix, and establish a similar
result for correlation matrices.
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Theorem 7.5. (i) An n × n square matrix is the covariance matrix of n random
variables if and only if the matrix is symmetric positive semidefinite.

(ii) An n × n square matrix is the correlation matrix of n random variables if and
only if the matrix is symmetric positive semidefinite and has all the entries on the
main diagonal equal to 1.

Proof. (i) Recall from Lemma 7.4 that any covariance matrix is symmetric positive
semidefinite.

To prove that any symmetric positive semidefinite matrix is a covariance matrix,
let A be an n × n symmetric positive semidefinite matrix. We will find random
variables X1, X2, . . . , Xn with covariance matrix ΣX = A.

Since the matrix A is symmetric, it follows from Theorem 5.4 that there exists an
orthogonal matrix Q and a diagonal matrix Λ such that

A = QΛQt. (7.84)

Recall that Λ = diag(λi)i=1:n, where λi, i = 1 : n, are the eigenvalues of A. Note
that λi ≥ 0, for all i = 1 : n, since the eigenvalues of a symmetric positive semidefinite
matrix are nonnegative; see Theorem 5.6. Let Λ1/2 be the diagonal matrix given by

Λ1/2 = diag
“√

λi

”
i=1:n

. (7.85)

Using (1.93), we find that

Λ1/2 Λ1/2 = diag (λi)i=1:n = Λ. (7.86)

Let
M = Q Λ1/2. (7.87)

Then,
M t = (Λ1/2)t Qt = Λ1/2 Qt, (7.88)

since Λ1/2 is a diagonal matrix and therefore symmetric, i.e., (Λ1/2)t = Λ1/2. Then,
from (7.87), (7.88), (7.86), and (7.84), we obtain that

MM t = QΛ1/2Λ1/2Qt = QΛQt = A. (7.89)

Let Z1, Z2, . . . , Zn be independent standard normal variables, and let X1, X2,
. . . , Xn be random variables4 given by X = MZ, where M is the matrix given by
(7.87), X = (Xi)i=1:n and Z = (Zi)i=1:n. Let ΣX be the covariance matrix of X1,
X2, . . . , Xn. Note that the covariance matrix ΣZ of Z1, Z2, . . . , Zn is the identity
matrix, i.e., ΣZ = I . Then, from the Linear Transformation Property (Theorem 7.3)
and using (7.89), we find that

ΣX = MΣZM t = MM t = A.

In other words, we found random variables X1, X2, . . . , Xn with covariance matrix
equal to the matrix A. We conclude that any symmetric positive semidefinite matrix
is a covariance matrix.

4Note that X1 , X2, . . . , Xn are, in fact, normal random variables, since they are linear
combinations of independent normal variables.
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(ii) Recall from Lemma 7.4 that any correlation matrix is symmetric positive semidef-
inite with main diagonal entries equal to 1; see (7.11).

To prove that any symmetric positive semidefinite matrix with main diagonal
entries equal to 1 is a correlation matrix, let A be an n × n symmetric positive
semidefinite with A(i, i) = 1 for all i = 1 : n. We will find random variables X1, X2,
. . . , Xn with correlation matrix ΩX = A.

We showed above that there exist random variables X1, X2, . . . , Xn with covari-
ance matrix ΣX = A. Since A(i, i) = 1 for all i = 1 : n, it follows that ΣX(i, i) = 1
for all i = 1 : n, and, from Lemma 7.2, we conclude that ΩX = ΣX = A, which is
what we wanted to show.

The method for finding normal random variables with a given covariance ma-
trix described above requires finding the eigenvalues of the given symmetric positive
semidefinite matrix. Note that this method is not used in practice if the given matrix
is symmetric positive definite, in which case the Cholesky decomposition of the given
covariance matrix is used; see section 7.5 for details.

Example: The 3× 3 matrix

A =

0
@

1 a b
a 1 c
b c 1

1
A (7.90)

is a correlation matrix if and only if

−1 ≤ a, b, c ≤ 1 and det(A) = 1 + 2abc − a2 − b2 − c2 ≥ 0. (7.91)

Solution: Since all the main diagonal entries of A are equal to 1, it follows from
Theorem 7.5 that the matrix A is a correlation matrix if and only if it is symmetric
positive semidefinite, which, according to (5.64) is equivalent to

−1 ≤ a, b, c ≤ 1 and det(A) = 1 + 2abc − a2 − b2 − c2 ≥ 0. � (7.92)

Example: Find all the values of ρ such that the matrix

Ω =

0
@

1 0.8 0.3
0.8 1 ρ
0.3 ρ 1

1
A

is a correlation matrix.

Solution: From (7.91), it follows that the matrix Ω is a correlation matrix if and only
if −1 ≤ ρ ≤ 1 and

det(Ω) = 1 + 2 · (0.8) · (0.3) · ρ− ρ2 − (0.8)2 − (0.3)2 ≥ 0,

which is equivalent to
ρ2 − 0.48ρ− 0.27 ≤ 0. (7.93)

Thus, ρ must be between the roots −0.332364 and 0.812364 of the quadratic equation
ρ2 − 0.48ρ − 0.27 = 0 corresponding to (7.93), which is equivalent to −0.332364 ≤
ρ ≤ 0.812364; note that the condition −1 ≤ ρ ≤ 1 is satisfied for all such values of ρ.
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We conclude that the matrix Ω is a correlation matrix if and only if

−0.332364 ≤ ρ ≤ 0.812364. �

Example: Show that it is not possible to find three random variables on the same
probability space with correlations 0.75, 0.75, and −0.75. In other words, show that
it is not possible to find random variables X1, X2, X3 such that

corr(X1, X2) = 0.75; corr(X1, X3) = 0.75; corr(X2, X3) = −0.75. (7.94)

Solution: We give a proof by contradiction. Assume that random variables X1, X2,
X3 with correlations given by (7.94) exist. Then, the correlation matrix of X1, X2,
X3 is

ΣX =

0
@ 1 0.75 0.75

0.75 1 −0.75
−0.75 −0.75 1

1
A ,

which is the same as the matrix from (7.90) with a = 0.75, b = 0.75, and c = −0.75.
However, the condition (7.91) for the matrix ΣX to be a correlation matrix is not

satisfied since, for a = 0.75, b = 0.75, and c = −0.75, we obtain that

1 + 2abc − a2 − b2 − c2 = 1 + 2(0.75)(0.75)(−0.75)

− (0.75)2 − (0.75)2 − (−0.75)2

= 1− 0.84375 − 1.6875 = − 1.53125

< 0.

We conclude that random variables X1, X2, X3 with correlations given by (7.94)
do not exist.

7.5 Finding normal variables with a given covariance or
correlation matrix

Finding normal random variables with a given correlation matrix is often needed in
practice, e.g., for Monte Carlo simulations; see section 7.5.1. A way to do so based
on the Cholesky decomposition and the Linear Transformation Property is presented
below.

Theorem 7.6. (i) Let A be a symmetric positive definite matrix, and let U be the
Cholesky factor of A. Let Z1, Z2, . . . , Zn be independent standard normal variables,
and let X1, X2, . . . , Xn be random variables given by

X = U tZ, (7.95)

where X = (Xi)i=1:n and Z = (Zi)i=1:n. Then, X1, X2, . . . , Xn are normal random
variables with covariance matrix ΣX equal to the given matrix A, i.e.,

ΣX = A. (7.96)


