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Since the matrix AtA is symmetric positive definite, we obtain that the Hessian
D2f(x0) is symmetric positive definite, and therefore x0 is a minimum point for the
function f(x). We conclude that the point x0 is a global minimum point for f(x),
since x0 is the only critical point of f(x).

Thus, the solution to the least squares problem (8.1) is given by (8.15), i.e.,

x = (AtA)−1Aty. (8.16)

Note that the numerical value of x from (8.16) is computed by solving the linear
system (AtA)x = Aty using the Cholesky solver from Table 6.2, since AtA is a
symmetric positive definite matrix; see the pseudocode from Table 8.1 for details.

Table 8.1: Least squares implementation

Function Call:
x = least squares(A,y)

Input:
A = m × n matrix; m > n
y = column vector of size m

Output:
x = solution to min ||y −Ax||

x = linear solve cholesky(AtA,Aty);

8.1.1 Least squares for implied volatility computation

Consider a European call or put option1 on an underlying asset whose price is as-
sumed to follow a lognormal model. The implied volatility of the option is the unique
value of the volatility parameter σ from the lognormal model that makes the Black–
Scholes value of the option equal to the market price of the option.

More precisely, if Cm and Pm are the market prices of a European call option
and of a European put option, respectively, with strike K and maturity T on an
underlying asset with spot price S paying dividends continuously at the rate q, and
assuming that interest rates are constant and equal to r, the implied volatility σimp

corresponding to the price Cm is, by definition, the solution σ = σimp to

CBS(S, K,T, σ, r, q) = Cm; (8.17)

the implied volatility σimp corresponding to price Pm is the solution σ = σimp to

PBS(S, K,T, σ, r, q) = Pm. (8.18)

Here, CBS(S, K,T, σ, r, q) and PBS(S, K,T, σ, r, q) are the Black–Scholes values of a
call option and of a put option given by (10.77–10.80), i.e.,

CBS(S, K,T, σ, r, q) = Se−qT N(d1) −Ke−rT N(d2); (8.19)

PBS(S, K,T, σ, r, q) = Ke−rTN(−d2)− Se−qT N(−d1), (8.20)
1See Section 10.3 for a brief overview of European options.
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respectively, where N(z) is the cumulative distribution of the standard normal vari-
able, i.e.,
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For any plain vanilla European option, the option price Cm or Pm, the maturity
T , the strike K , and the spot price S of the underlying asset are known. However,
a continuous dividend yield q for the underlying asset is very rarely quoted in the
markets and the interest rate r could be chosen from several different discount curves.
As seen below,2 the least squares method and Put-Call parity can be used to overcome
these issues and find the implied volatility using Newton’s method.

As an example of how implied volatilities are computed in practice, consider the
snapshot from Table 8.2 of the mid prices3 on March 9, 2012, of the S&P 500 options
(ticker symbol SPX)4 maturing on December 22, 2012. These options are European
options and therefore we can use the Black–Scholes framework. Although not needed
for this method, the corresponding spot price of the index was 1, 370.

Table 8.2: Dec 2012 SPX option prices on 3/9/2012

Call Strike Price Put Strike Price
C1175 225.40 P1175 46.60
C1200 205.55 P1200 51.55
C1225 186.20 P1225 57.15
C1250 167.50 P1250 63.30
C1275 149.15 P1275 70.15
C1300 131.70 P1300 77.70
C1325 115.25 P1325 86.20
C1350 99.55 P1350 95.30
C1375 84.90 P1375 105.30
C1400 71.10 P1400 116.55
C1425 58.70 P1425 129.00
C1450 47.25 P1450 143.20
C1500 29.25 P1500 173.95
C1550 15.80 P1550 210.80
C1575 11.10 P1575 230.90
C1600 7.90 P1600 252.40

Recall that the Put-Call parity states that taking a long position in a European
call option and a short position in a European put option with the same strike K
and maturity T is equivalent to taking a long position in a forward contract with

2This method was implemented in 2010 in Bloomberg terminals, providing a tenfold improve-
ment in the accuracy of implied volatility calculations over the prior method.

3The mid price of an option is the average of the bid price and ask price of the option.
4More information on SPX options can be found on the Chicago Board Options Exchange

(CBOE); see http://www.cboe.com/products/indexopts/spx spec.aspx
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delivery price K and maturity T , and therefore the following relationship between
the values C and P of the call and put options must hold for no–arbitrage:

C − P = Se−qT −Ke−rT . (8.22)

Let F = Se(r−q)T be the forward price of the asset at time T . Then, Se−qT =
Fe−rT and the Put–Call parity (8.22) can be written as

C − P = Fe−rT −Ke−rT . (8.23)

Denote by disc = e−rT the discount factor, and let PV F = Fe−rT be the present
value of the forward price. Then, (8.23) is the same as

C − P = PV F −K · disc. (8.24)

The data from Table 8.2 provides call and put options values for 16 different
strikes. From (8.24), it follows that the values of PV F and disc can be obtained by

solving a least square problem y ≈ Ax, see (8.2), with x =

„
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«
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following 16× 2 matrix A and the following 16× 1 column vector y corresponding to
C − P for each strike:
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The solution x = (AtA)−1Aty to this least squares problem, see (8.16), is com-
puted as x = least squares(A,y) by using the routine from Table 8.1. We find that

x =

„
PV F
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«
=

„
1349.54
0.9964

«
. (8.25)

In order to use the values PV F = 1349.54 and disc = 0.9964 obtained above to
compute implied volatilities, we first show that the Black–Scholes formulas (8.19–
8.21) can be written in terms of PV F and disc without any dependence on r, q, or
the spot price S; see (8.34–8.36).

Recall that PV F = Fe−rT . Since F = Se(r−q)T , it follows that

PV F = Fe−rT = Se(r−q)T · e−rT

= Se−qT . (8.26)
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Also, recall that
disc = e−rT . (8.27)

Then, using (8.26) and (8.27), the Black–Scholes formulas (8.19) and (8.20) can
be written as

CBS = PV F ·N(d1)−K · disc ·N(d2); (8.28)

PBS = K · disc ·N(−d2) − PV F · N(−d1). (8.29)

Moreover,
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where for (8.30) we used the facts that ln(ex) = x for any x and ln(a)+ln(b) = ln(ab)
for any a, b > 0, and for (8.31) we used (8.26) and (8.27), i.e., Se−qT = PV F and
e−rT = disc.

Then, from (8.21) and (8.31), we obtain that
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From (8.28), (8.29), (8.32), and (8.33), we conclude that the Black–Scholes option
values can be written as functions of PV F , disc, K , T , and σ as follows:

CBS(PV F, disc, K,T, σ) = PV F ·N(d1)−K · disc ·N(d2); (8.34)

PBS(PV F, disc, K,T, σ) = K · disc · N(−d2) − PV F · N(−d1), (8.35)
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Since K and T are known and PV F and disc have been computed using least
squares, see (8.25), we can use Newton’s method to solve either

CBS(PV F,disc, T, σ) = Cm (8.37)

or
PBS(PV F,disc, T, σ) = Pm (8.38)

for σ = σimp for every option from Table 8.2.

For call options, we look at (8.37) as a function of only one variable, σ. Then,
finding the implied volatility for a call option requires solving the nonlinear problem

fC(x) = 0, (8.39)
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using Newton’s method, where x = σ and

fC(x) = PV F · N(d1(x))−K · disc ·N(d2(x)) − Cm, (8.40)

with d1(x) and d2(x) given by (8.36), i.e.,
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The value of x thus computed is the implied volatility σimp.
Note that differentiating the function fC(x) with respect to x is the same as

computing the vega of the call option, which is equal to
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see (10.85). Then, since Se−qT = PV F , we obtain that
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The Newton’s method recursion for solving (8.39) is

xk+1 = xk − fC(xk)

f ′C(xk)
, (8.43)

where the functions fC(x) and f ′C(x) are given by (8.40) and (8.42), respectively.

Similarly, for put options we look at (8.38) as a function of only one variable, σ.
Then, finding the implied volatility for a put option requires solving the nonlinear
problem

fP (x) = 0, (8.44)

where x = σ and

fP (x) = K · disc ·N(−d2(x))− PV F ·N(−d1(x)) − Pm, (8.45)

with d1(x) and d2(x) given by (8.36), i.e.,
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Differentiating the function fP (x) with respect to x is the same as computing the
vega of the put option, which is equal to

vegaP = Se−qT
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respectively; see (10.86) and (10.85).
Then, since Se−qT = PV F , we obtain that

f ′P (x) = PV F
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Note that f ′P (x) = f ′C(x), since vegaP = vegaC .

The Newton’s method recursion for solving (8.44) is

xk+1 = xk − fP (xk)

f ′P (xk)
, (8.48)

where the functions fP (x) and f ′P (x) are given by (8.45) and (8.47), respectively.

A good initial guess for Newton’s method is 25% volatility, i.e., x0 = 0.25, and the
algorithm is stopped when two consecutive approximations in Newton’s method are
within 10−6 of each other; see the pseudocode from Table 8.3 for finding the implied
volatility for both call and put options, i.e., for solving either (8.43) or (8.48).

Table 8.3: Pseudocode for computing implied volatility

Input:
Vm = option price

// Vm = Cm for call implied vol; Vm = Pm for put implied vol
K = strike price of the option
T = maturity of the option
PV F = present value of the forward price of the underlying asset
disc = discount factor corresponding to time T
tol = tolerance for Newton’s method convergence
fBS(x) = Black–Scholes option value; x = volatility

// fBS(x) = fC(x) for calls; fBS(x) = fP (x) for puts
// f ′BS(x) = f ′C(x) = f ′P (x)

Output:
xnew = implied volatility

x0 = 0.25; // initial guess: 25% volatility
xnew = x0; xold = x0 − 1; tol = 10−6

while (|xnew − xold| > tol)
xold = xnew

xnew = xold − fBS(xold) − Vm

f ′

BS
(xold)

end

For the options from Table 8.2, note that the options maturity is T = 199
252 , i.e.,

the ratio of 199, the number of trading days between March 9, 2012 and December
22, 2012, and 252, the total number of trading days in a year. Using the values
PV F = 1349.54 and disc = 0.9964 computed using least squares and the Newton’s
method from Table 8.3, we obtain the implied volatilies from Table 8.4.

A consequence of the Put–Call parity is that the theoretical values of implied
volatilities of calls and puts with the same strike are equal. Note that, indeed, the
implied volatilities from Table 8.4 corresponding to calls and puts with the same
strike are nearly identical.



8.2. LINEAR REGRESSION: ORDINARY LEAST SQUARES FOR TIME
SERIES DATA 227

Table 8.4: Implied volatilies for SPX options

Strike Implied Vol Implied Vol Strike Implied Vol Implied Vol
Call Put Call Put

1175 25.73% 25.72% 1375 19.69% 19.66%
1200 24.96% 24.92% 1400 18.94% 18.94%
1225 24.19% 24.16% 1425 18.26% 18.25%
1250 23.44% 23.40% 1450 17.53% 17.68%
1275 22.63% 22.65% 1500 16.34% 16.24%
1300 21.86% 21.91% 1550 15.05% 15.08%
1325 21.15% 21.20% 1575 14.48% 14.47%
1350 20.41% 20.43% 1600 14.13% 14.02%

8.2 Linear regression: ordinary least squares for time
series data

Linear regression for time series data (also called ordinary least squares for time series
data) requires finding the best approximation of the time series data of a random
variable by a linear combination of the time series data of other random variables
and a constant vector.

Let Y and X1, X2, . . . , Xn be random variables given by time series data at N
data points ti, i = 1 : N . Assume that the sample covariance matrix corresponding
to the time series data for X1, X2, . . . , Xn is nonsingular, or, equivalently, that the
column vectors of the time series data for X1, X2, . . . , Xn and the N × 1 column
vector with all entries equal to 1 are linearly independent; cf. Theorem 7.2.

We look for the best linear approximation of the time series data for Y by a linear
combination of the time series data for X1, X2, . . . , Xn plus a constant vector, i.e.,
we look for constants a, b1, b2, . . . , bn such that

0
BBB@

Y (t1)
Y (t2)

...
Y (tN )

1
CCCA ≈

0
BBB@

a +
Pn

k=1 bkXk(t1)
a +

Pn
k=1 bkXk(t2)

...
a +

Pn
k=1 bkXk(tN )

1
CCCA

⇐⇒

0
BBB@

Y (t1)
Y (t2)

...
Y (tN )

1
CCCA ≈

0
BBB@

a
a
...
a

1
CCCA +

nX
k=1

bk

0
BBB@

Xk(t1)
Xk(t2)

...
Xk(tN )

1
CCCA

⇐⇒

0
BBB@

Y (t1)
Y (t2)

...
Y (tN )

1
CCCA ≈

0
BBB@

1 X1(t1) . . . Xn(t1)
1 X1(t2) . . . Xn(t2)
...

...
...

...
1 X1(tN) . . . Xn(tN )

1
CCCA

0
BBB@

a
b1
...

bn

1
CCCA . (8.49)

Denote by TY and TXk the column vectors of the time series data for the random
variables Y and Xk, for k = 1 : n, respectively, i.e.,

TY = (Y (ti))i=1:N ; (8.50)


