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The intuition behind ordinary least squares for time series data.

8.1 Ordinary least squares

Let A be an m × n matrix with more rows than columns, i.e., with m > n, and
assume that the column vectors of the matrix A are linearly independent. Let y be
a column vector of size m.

A solution x ∈ R
n to the linear system Ax = y exists if and only if the vector y is

a linear combination of the column vectors of A, which is rarely the case in practice.
The ordinary least squares method (OLS) provides an alternative to solving Ax =

y exactly, and requires finding a vector x ∈ R
n with smallest approximation error

y−Ax, i.e., such that ||y−Ax|| is minimal, where || · || denotes the Euclidean norm;
see (5.8). This can be stated formally as follows:

Given y ∈ R
m, find x ∈ R

n such that ||y − Ax|| is minimal. (8.1)

Note that we will also refer to (8.1) as solving the least squares problem

y ≈ Ax. (8.2)

Problem (8.1) is equivalent to finding the global minimum point of the function
f : R

n → R given by

f(x) = ||y − Ax||2. (8.3)

Recall from (5.8) that ||w||2 = (w,w) = wtw for any vector w. Then,

||y − Ax||2 = (y − Ax)t(y −Ax) = (yt − xtAt)(y −Ax)

= yty − xtAty − ytAx + xtAtAx. (8.4)
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Note that
ytAx = xtAty (8.5)

since (u, v) = (v, u) for any u and v and therefore

ytAx = (Ax,y) = (y, Ax) = (Ax)ty = xtAty.

From (8.4) and (8.5), it follows that

||y −Ax||2 = yty − 2xtAty + xtAtAx. (8.6)

From (8.3) and (8.6), and since yty = ||y||2, we conclude that

f(x) = ||y||2− 2xtAty + xtAtAx. (8.7)

Recall that any minimum point x0 of f(x) must be a critical point of f(x), i.e., a
solution to Df(x0) = 0. From (8.7), it follows that the gradient Df(x) of f(x) is

Df(x) = − 2D(xtAty) + D(xtAtAx), (8.8)

since ||y||2 is not a function of x and therefore D(||y||2) = 0.
Recall from (10.44) and (10.47) the following gradient formulas:

D(xtC) = Ct (8.9)

D
`
xtMx

´
= 2 (Mx)t , (8.10)

for any constant column vector C and for any symmetric matrix M . Since AtA is a
symmetric matrix, see Lemma 5.2, we obtain from (8.9) and (8.10) that

D(xtAty) = (Aty)t; (8.11)

D(xtAtAx) = 2(AtAx)t. (8.12)

From (8.8), (8.11), and (8.12), it follows that

Df(x) = −2(Aty)t + 2(AtAx)t

= 2(AtAx− Aty)t. (8.13)

From (8.13), we find that Df(x0) = 0 if and only if

AtAx0 = Aty. (8.14)

Since the columns of A are linearly independent, it follows from Lemma 5.2 that
the matrix AtA is symmetric positive definite. Then, AtA is a nonsingular matrix,
see Lemma 5.3, and therefore the unique solution of (8.14) is

x0 = (AtA)−1Aty. (8.15)

To classify the critical point x0 given by (8.15), we compute the Hessian of f(x).
From (10.46) and (10.48), we obtain that D2(xtAty) = 0 and D2

`
xtAtAx

´
= 2(AtA).

Then, from (8.7), it follows that D2f(x) = 2(AtA), and therefore

D2f(x0) = 2(AtA).
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Since the matrix AtA is symmetric positive definite, we obtain that the Hessian
D2f(x0) is symmetric positive definite, and therefore x0 is a minimum point for the
function f(x). We conclude that the point x0 is a global minimum point for f(x),
since x0 is the only critical point of f(x).

Thus, the solution to the least squares problem (8.1) is given by (8.15), i.e.,

x = (AtA)−1Aty. (8.16)

Note that the numerical value of x from (8.16) is computed by solving the linear
system (AtA)x = Aty using the Cholesky solver from Table 6.2, since AtA is a
symmetric positive definite matrix; see the pseudocode from Table 8.1 for details.

Table 8.1: Least squares implementation

Function Call:
x = least squares(A,y)

Input:
A = m × n matrix; m > n
y = column vector of size m

Output:
x = solution to min ||y −Ax||

x = linear solve cholesky(AtA,Aty);

8.1.1 Least squares for implied volatility computation

Consider a European call or put option1 on an underlying asset whose price is as-
sumed to follow a lognormal model. The implied volatility of the option is the unique
value of the volatility parameter σ from the lognormal model that makes the Black–
Scholes value of the option equal to the market price of the option.

More precisely, if Cm and Pm are the market prices of a European call option
and of a European put option, respectively, with strike K and maturity T on an
underlying asset with spot price S paying dividends continuously at the rate q, and
assuming that interest rates are constant and equal to r, the implied volatility σimp

corresponding to the price Cm is, by definition, the solution σ = σimp to

CBS(S, K,T, σ, r, q) = Cm; (8.17)

the implied volatility σimp corresponding to price Pm is the solution σ = σimp to

PBS(S, K,T, σ, r, q) = Pm. (8.18)

Here, CBS(S, K,T, σ, r, q) and PBS(S, K,T, σ, r, q) are the Black–Scholes values of a
call option and of a put option given by (10.77–10.80), i.e.,

CBS(S, K,T, σ, r, q) = Se−qT N(d1) −Ke−rT N(d2); (8.19)

PBS(S, K,T, σ, r, q) = Ke−rTN(−d2)− Se−qT N(−d1), (8.20)
1See Section 10.3 for a brief overview of European options.


