Chapter 8

Ordinary least squares (OLS). Linear regression.

Ordinary least squares (OLS).

Least squares for implied volatility computation.

Linear regression: ordinary least squares for time series data.

Ordinary least squares for random variables.

The intuition behind ordinary least squares for time series data.

8.1 Ordinary least squares

Let A be an $m \times n$ matrix with more rows than columns, i.e., with $m > n$, and assume that the column vectors of the matrix A are linearly independent. Let y be a column vector of size m.

A solution $x \in \mathbb{R}^n$ to the linear system $Ax = y$ exists if and only if the vector y is a linear combination of the column vectors of A, which is rarely the case in practice.

The ordinary least squares method (OLS) provides an alternative to solving $Ax = y$ exactly, and requires finding a vector $x \in \mathbb{R}^n$ with smallest approximation error $y - Ax$, i.e., such that $||y - Ax||$ is minimal, where $|| \cdot ||$ denotes the Euclidean norm; see (5.8). This can be stated formally as follows:

Given $y \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that $||y - Ax||$ is minimal. \hfill (8.1)

Note that we will also refer to (8.1) as solving the least squares problem

$$y \approx Ax.$$ \hfill (8.2)

Problem (8.1) is equivalent to finding the global minimum point of the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = ||y - Ax||^2.$$

Recall from (5.8) that $||w||^2 = \langle w, w \rangle = w^t w$ for any vector w. Then,

$$||y - Ax||^2 = \langle y - Ax, y - Ax \rangle = \langle y - x^t A^t \rangle \langle y - Ax \rangle = y^t y - x^t A^t y - y^t A x + x^t A^t x.$$ \hfill (8.4)
CHAPTER 8. ORDINARY LEAST SQUARES. LINEAR REGRESSION.

Note that
\[y'Ax = x'A'y \quad (8.5) \]
since \((u, v) = (v, u)\) for any \(u\) and \(v\) and therefore
\[
y'Ax = (Ax, y) = (y, Ax) = (Ax)'y = x'A'y.
\]

From (8.4) and (8.5), it follows that
\[
||y - Ax||^2 = y'y - 2x'A'y + x'A'Ax. \quad (8.6)
\]

From (8.3) and (8.6), and since \(y'y = ||y||^2\), we conclude that
\[
f(x) = ||y||^2 - 2x'A'y + x'A'Ax. \quad (8.7)
\]

Recall that any minimum point \(x_0\) of \(f(x)\) must be a critical point of \(f(x)\), i.e., a solution to \(Df(x_0) = 0\). From (8.7), it follows that the gradient \(Df(x)\) of \(f(x)\) is
\[
Df(x) = -2D(x'A'y) + D(x'A'Ax), \quad (8.8)
\]
since \(||y||^2\) is not a function of \(x\) and therefore \(D(||y||^2) = 0\).

Recall from (10.44) and (10.47) the following gradient formulas:
\[
D(x'C) = C^t, \quad \quad (8.9)
\]
\[
D(x'Mx) = 2(Mx)^t, \quad \quad (8.10)
\]
for any constant column vector \(C\) and for any symmetric matrix \(M\). Since \(A'A\) is a symmetric matrix, see Lemma 5.2, we obtain from (8.9) and (8.10) that
\[
D(x'A'y) = (A'y)^t; \quad \quad (8.11)
\]
\[
D(x'A'Ax) = 2(A'Ax)^t. \quad \quad (8.12)
\]

From (8.8), (8.11), and (8.12), it follows that
\[
Df(x) = -2(A'y)^t + 2(A'Ax)^t
\]
\[
= 2(A'Ax - A'y)^t. \quad \quad (8.13)
\]

From (8.13), we find that \(Df(x_0) = 0\) if and only if
\[
A'Ax_0 = A'y. \quad \quad (8.14)
\]

Since the columns of \(A\) are linearly independent, it follows from Lemma 5.2 that the matrix \(A'A\) is symmetric positive definite. Then, \(A'A\) is a nonsingular matrix, see Lemma 5.3, and therefore the unique solution of (8.14) is
\[
x_0 = (A'A)^{-1}A'y. \quad \quad (8.15)
\]

To classify the critical point \(x_0\) given by (8.15), we compute the Hessian of \(f(x)\). From (10.46) and (10.48), we obtain that \(D^2(x'A'y) = 0\) and \(D^2(x'A'Ax) = 2(A'A)\). Then, from (8.7), it follows that \(D^2f(x) = 2(A'A)\), and therefore
\[
D^2f(x_0) = 2(A'A).
\]
8.1. LEAST SQUARES FOR IMPLIED VOLATILITY COMPUTATION

Since the matrix \(A^t A \) is symmetric positive definite, we obtain that the Hessian \(D^2 f(x_0) \) is symmetric positive definite, and therefore \(x_0 \) is a minimum point for the function \(f(x) \). We conclude that the point \(x_0 \) is a global minimum point for \(f(x) \), since \(x_0 \) is the only critical point of \(f(x) \).

Thus, the solution to the least squares problem (8.1) is given by (8.15), i.e.,
\[
x = (A^t A)^{-1} A^t y. \tag{8.16}
\]

Note that the numerical value of \(x \) from (8.16) is computed by solving the linear system \((A^t A)x = A^t y\) using the Cholesky solver from Table 6.2, since \(A^t A \) is a symmetric positive definite matrix; see the pseudocode from Table 8.1 for details.

Table 8.1: Least squares implementation

<table>
<thead>
<tr>
<th>Function Call:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = \text{least_squares}(A, y))</td>
</tr>
</tbody>
</table>

Input:
- \(A = m \times n \) matrix; \(m > n \)
- \(y = \) column vector of size \(m \)

Output:
- \(x = \) solution to \(\min ||y - Ax|| \)
- \(x = \text{linear_solve_cholesky}(A^t A, A^t y); \)

8.1.1 Least squares for implied volatility computation

Consider a European call or put option\(^1\) on an underlying asset whose price is assumed to follow a lognormal model. The implied volatility of the option is the unique value of the volatility parameter \(\sigma \) from the lognormal model that makes the Black–Scholes value of the option equal to the market price of the option.

More precisely, if \(C_m \) and \(P_m \) are the market prices of a European call option and of a European put option, respectively, with strike \(K \) and maturity \(T \) on an underlying asset with spot price \(S \) paying dividends continuously at the rate \(q \), and assuming that interest rates are constant and equal to \(r \), the implied volatility \(\sigma_{imp} \) corresponding to the price \(C_m \) is, by definition, the solution \(\sigma = \sigma_{imp} \) to
\[
C_{BS}(S, K, T, \sigma, r, q) = C_m; \tag{8.17}
\]
the implied volatility \(\sigma_{imp} \) corresponding to price \(P_m \) is the solution \(\sigma = \sigma_{imp} \) to
\[
P_{BS}(S, K, T, \sigma, r, q) = P_m. \tag{8.18}
\]
Here, \(C_{BS}(S, K, T, \sigma, r, q) \) and \(P_{BS}(S, K, T, \sigma, r, q) \) are the Black–Scholes values of a call option and of a put option given by (10.77–10.80), i.e.,
\[
C_{BS}(S, K, T, \sigma, r, q) = Se^{-qT}N(d_1) - Ke^{-rT}N(d_2); \tag{8.19}
\]
\[
P_{BS}(S, K, T, \sigma, r, q) = Ke^{-rT}N(-d_2) - Se^{-qT}N(-d_1), \tag{8.20}
\]
\(^1\)See Section 10.3 for a brief overview of European options.