
6 CHAPTER 1. VECTORS AND MATRICES

1.2 Solutions to Chapter 1 Exercises

Problem 1: Let

A =

0B@ 1 −1 2 5 4
3 −2 1 4 2
0 1 2 −1 3

−5 4 2 −4 3

1CA .

Show that the column rank and the row rank of A are both equal to 3.

Solution: Let

(c1 | c2 | c3 | c4 | c5) =

0B@ 1 −1 2 5 4
3 −2 1 4 2
0 1 2 −1 3

−5 4 2 −4 3

1CA
be the column form of the matrix A. By doing column reduction for A, we obtain
that

(c1 | c1 + c2 | c3 − 2c1 | c4 − 5c1 | c5 − 4c1)

=

0B@ 1 0 0 0 0
3 1 −5 −11 −10
0 1 2 −1 3

−5 −1 12 21 23

1CA ;

(c1 | c1 + c2 | c3 − 2c1 + 5(c1 + c2) | c4 − 5c1 + 11(c1 + c2) |
c5 − 4c1 + 10(c1 + c2))

= (c1 | c1 + c2 | 3c1 + 5c2 + c3 | 6c1 + 11c2 + c4 | 6c1 + 10c2 + c5) (1.2)

=

0B@ 1 0 0 0 0
3 1 0 0 0
0 1 7 10 13
−5 −1 7 10 13

1CA . (1.3)

From (1.2) and (1.3), it follows that the first three columns c1, c2, and c3 of the
matrix A are linearly independent, while0B@ 0

0
1
1

1CA =
1

7
(3c1 + 5c2 + c3) =

1

10
(6c1 + 11c2 + c4) =

1

13
(6c1 + 10c2 + c5).

Then,

1

10
(6c1 + 11c2 + c4) =

1

7
(3c1 + 5c2 + c3) ⇐⇒ c4 = − 12

7
c1 − 27

7
c2 +

10

7
c3;

1

13
(6c1 + 10c2 + c5) =

1

7
(3c1 + 5c2 + c3) ⇐⇒ c5 = − 3

7
c1 − 5

7
c2 +

13

7
c3,

and therefore the columns c4 and c5 are linearly dependent on c1, c2, c3.
We conclude that the column rank of the matrix A is 3.
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Let 0B@ r1

r2

r3

r4

1CA =

0B@ 1 −1 2 5 4
3 −2 1 4 2
0 1 2 −1 3

−5 4 2 −4 3

1CA
be the row form of the matrix A. By doing row reduction for A, we obtain that0B@ r1

r2 − 3r1

r3

r4 + 5r1

1CA =

0B@ 1 −1 2 5 4
0 1 −5 −11 −10
0 1 2 −1 3
0 −1 12 21 23

1CA ;

0B@ r1

r2 − 3r1

r3 − (r2 − 3r1)
r4 + 5r1 + (r2 − 3r1)

1CA =

0B@ r1

r2 − 3r1

3r1 − r2 + r3

2r1 + r2 + r4

1CA (1.4)

=

0B@ 1 −1 2 5 4
0 1 −5 −11 −10
0 0 7 10 13
0 0 7 10 13

1CA . (1.5)

From (1.4) and (1.5), it follows that the first three rows r1, r2, and r3 of the matrix
A are linearly independent, while

3r1 − r2 + r3 = 2r1 + r2 + r4 = (0 0 7 10 13) .

Then,
r4 = r1 − 2r2 + r3,

and therefore the row r4 is linearly dependent on r1, r2, r3.
We conclude that the row rank of the matrix A is 3. �

Problem 2: Let x and y be column vectors of size n, and let I be the identity matrix
of size n.

(i) If ytx �= −1, show that

(I + xyt)−1 = I − 1

1 + ytx
xyt. (1.6)

In other words, show that„
I − 1

1 + ytx
xyt

«
(I + xyt) = I. (1.7)

(ii) Show that the matrix I + xyt is nonsingular if and only if ytx �= −1.

Solution: (i) Note that the right hand side of (1.6) in indeed an n×n matrix: xyt is
the result of a column vector–row vector multiplication, and therefore it is an n× n
matrix, while ytx is the result of a row vector–column vector multiplication, and
therefore it is a number, which means 1

1+ytx
is a number.
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Then,„
I − 1

1 + ytx
xyt

«
(I + xyt) = I + xyt − 1

1 + ytx
xyt(I + xyt)

= I + xyt − 1

1 + ytx
xyt − 1

1 + ytx
(xyt)(xyt)

= I + xyt − 1

1 + ytx
xyt − 1

1 + ytx
x(ytx)yt

= I + xyt − 1

1 + ytx
xyt − ytx

1 + ytx
xyt (1.8)

= I + xyt − 1 + ytx

1 + ytx
xyt

= I + xyt − xyt

= I,

where, for (1.8), we used the fact that ytx is a number (since it is the result of a row
vector–column vector multiplication), and therefore

1

1 + ytx
x(ytx)yt =

1

1 + ytx
(ytx) xyt =

ytx

1 + ytx
xyt.

Thus, (1.7) is established, and therefore I− 1
1+ytx

xyt is the inverse matrix of I +xyt,
i.e.,

(I + xyt)−1 = I − 1

1 + ytx
xyt.

(ii) To show that the matrix I +xyt is nonsingular if and only if ytx �= −1, note that
we showed in part (i) that, if ytx �= −1, then the matrix I + xyt has an inverse and
it is therefore nonsingular.

Thus, we only need to show that, if ytx = −1, then the matrix I +xyt is singular.
Assume that ytx = −1. Then,

(I + xyt)x = x + xytx = x + x(ytx) = x + x(−1) = x− x = 0.

Thus,

(I + xyt)x = 0. (1.9)

If the matrix I + xyt were nonsingular, then we multiply (1.9) to the left by the
inverse of the matrix I + xyt and obtain that

(I + xyt)x = 0 ⇐⇒ (I + xyt)−1(I + xyt)x = 0

⇐⇒ x = 0,

since (I + xyt)−1(I + xyt) = I .

However, if x = 0, then ytx = 0, which is not possible since ytx = −1. This is a
contradiction which comes from the assumption that the matrix I+xyt is nonsingular.

We conclude that, if ytx = −1, then the matrix I +xyt is singular, which is what
we wanted to show. �
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Problem 3: (i) Use induction to show that 
nY

i=1

Ai

!t

=

nY
i=1

At
n+1−i (1.10)

for any mi × ni matrices Ai, i = 1 : n, with ni = mi+1 for i = 1 : (n− 1).

(ii) Show that  
nY

i=1

Ai

!−1

=

nY
i=1

A−1
n+1−i (1.11)

for any nonsingular square matrices Ai of the same size.

Solution: (i) Recall that, if B is an m× n matrix and C is an n× p matrix, than

(BC)t = CtBt. (1.12)

Note that (1.10) can be written as

(A1A2 . . . An−1An)t = At
nAt

n−1 . . . At
2A

t
1. (1.13)

We will prove (1.13) by induction.
For n = 2, (1.13) becomes (A1A2)

t = At
2A

t
1, which holds true; see (1.12).

Assume that (1.13) holds true for n, i.e., assume that

(A1A2 . . . An−1An)t = At
nAt

n−1 . . . At
2A

t
1. (1.14)

We will show that (1.13) holds true for n + 1, i.e.,

(A1A2 . . . AnAn+1)
t = At

n+1A
t
n . . . At

2A
t
1. (1.15)

Using (1.12) for B = A1A2 . . . An and C = An+1, and using the induction hy-
pothesis (1.14), we find that

(A1A2 . . . AnAn+1)
t = ((A1A2 . . . An) · An+1)

t

= At
n+1 (A1A2 . . . An)t

= At
n+1A

t
n . . . At

2A
t
1,

which is the same as (1.15).
We conclude that (1.13), which is the same as (1.10), is proved by induction.

(ii) The proof of (1.11) follows the exact same steps as the proof of (1.10) from (i)
and is based on the fact that, if B and C are nonsingular matrices of the same size,
then (BC)−1 = C−1B−1, which mirrors the property (1.12) for matrix transposes.
�

Problem 4: Let D = diag(di)i=1:n be a diagonal matrix of size n with distinct
diagonal entries, i.e., such that dj �= dk, for any 1 ≤ j �= k ≤ n. If A is a square
matrix of size n, show that AD = DA if and only if the matrix A is diagonal.
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Solution: Let A = col (ak)k=1:n, with ak = (A(j, k))j=1:n, be the column form of the
matrix A, and let A = row (rj)j=1:n, with rj = (A(j, k))k=1:n, be the row form of A.
Recall that

AD = col (dkak)k=1:n = (d1a1 | d2a2 | . . . | dnan) ; (1.16)

DA = row (djrj)j=1:n =

0BBB@
d1r1

d2r2

...
dnrn

1CCCA . (1.17)

From (1.16) and (1.17), we find

(AD)(j, k) = dkA(j, k), ∀ 1 ≤ j, k ≤ n; (1.18)

(DA)(j, k) = djA(j, k), ∀ 1 ≤ j, k ≤ n. (1.19)

From (1.18) and (1.19), we conclude that

AD = DA ⇐⇒ (AD)(j, k) = (DA)(j, k), ∀ 1 ≤ j, k ≤ n

⇐⇒ dkA(j, k) = djA(j, k), ∀ 1 ≤ j, k ≤ n

⇐⇒ (dk − dj)A(j, k) = 0, ∀ 1 ≤ j, k ≤ n

⇐⇒ A(j, k) = 0, ∀ 1 ≤ j �= k ≤ n, (1.20)

where (1.20) comes from the fact that dj �= dk for all 1 ≤ j �= k ≤ n, and therefore

dk − dj �= 0, ∀ 1 ≤ j �= k ≤ n.

In other words, AD = DA if and only if A(j, k) = 0 for all 1 ≤ j �= k ≤ n, i.e., if
and only if the matrix A is diagonal. �

Problem 5: Use the fact that D1D2 = D2D1 for any two diagonal matrices D1 and
D2 of the same size to show that

nY
i=1

Di =

nY
i=1

Dp(i), (1.21)

for any one-to-one function p : {1, 2, . . . n} → {1, 2, . . . n}, where Di, i = 1 : n, are
diagonal matrices of the same size.

Solution: The intuition behind the proof of this result is that, given a product of n
diagonal matrices of the same size, we can move the matrix Dn to the last position
in the product without changing the product, by using the fact that the product
of two diagonal matrices is commutative. Then, we use the same commutativity
property to move the matrix Dn−1 to the n − 1 position, followed by moving the
matrix Dn−2 to the n− 2 position, and so on, until moving matrix D2 to position 2,
which leaves matrix D1 in the first position, thus concluding that the product of n
diagonal matrices, regardless of the initial order, is D1D2 . . . Dn.

A formal proof of (1.21) based on the idea above can be given by induction.
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Assume that
nY

i=1

Di =

nY
i=1

Dpn(i), (1.22)

for any one-to-one function pn : {1, 2, . . . n} → {1, 2, . . . n}, where Di, i = 1 : n, are
diagonal matrices of the same size.

Let pn+1 : {1, 2, . . . n, n + 1} → {1, 2, . . . n, n + 1} be a one-to-one function. We
will show that

n+1Y
i=1

Di =

n+1Y
i=1

Dpn+1(i), (1.23)

where Di, i = 1 : n + 1, are diagonal matrices of the same size.
Since pn+1 is a one-to-one function from a set of n + 1 elements to a set of n + 1

elements, it follows that pn+1 is also an onto function, and therefore there exists l
with 1 ≤ l ≤ n + 1 such that pn+1(l) = n + 1. Then,

n+1Y
i=1

Dpn+1(i) =

l−1Y
i=1

Dpn+1(i) ·Dpn+1(l) ·
n+1Y

i=l+1

Dpn+1(i)

=
l−1Y
i=1

Dpn+1(i) ·Dn+1 ·
n+1Y

i=l+1

Dpn+1(i), (1.24)

since pn+1(l) = n + 1.
Note that

Qn+1
i=l+1 Dpn+1(i) is the product of n − l + 1 diagonal matrices and

therefore it is a diagonal matrix. Since the product of any two diagonal matrices is
a commutative, it follows that

·Dn+1 ·
n+1Y

i=l+1

Dpn+1(i) =

n+1Y
i=l+1

Dpn+1(i) ·Dn+1. (1.25)

From (1.24) and (1.25), we find that

n+1Y
i=1

Dpn+1(i) =

l−1Y
i=1

Dpn+1(i) ·
n+1Y

i=l+1

Dpn+1(i) ·Dn+1. (1.26)

Since pn+1 : {1, 2, . . . n, n + 1} → {1, 2, . . . n, n + 1} is a one-to-one function and
since pn+1(l) = n + 1, we obtain that pn+1(i) �= n + 1 for all 1 ≤ i �= l ≤ n + 1. In
other words,

1 ≤ pn+1(i) ≤ n, ∀ 1 ≤ i �= l ≤ n + 1.

Thus, the function pn : {1, 2, . . . n} → {1, 2, . . . n} given by

pn(i) =

j
pn+1(i) if 1 ≤ i ≤ l− 1;

pn+1(i + 1) if l + 1 ≤ i ≤ n + 1,
(1.27)

is well defined and one-to-one.
From the definition (1.27), it follows that

l−1Y
i=1

Dpn+1(i) ·
n+1Y

i=l+1

Dpn+1(i) =

l−1Y
i=1

Dpn+1(i) ·
nY

i=l

Dpn+1(i+1
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=

l−1Y
i=1

Dpn(i) ·
nY

i=l

Dpn(i)

=
nY

i=1

Dpn(i), (1.28)

and therefore, from (1.26) and (1.28), we find that

n+1Y
i=1

Dpn+1(i) =

nY
i=1

Dpn(i) ·Dn+1. (1.29)

Recall from the induction hypothesis (1.22) that

nY
i=1

Dpn(i) =

nY
i=1

Di. (1.30)

Then, from (1.29) and (1.30), we obtain that

n+1Y
i=1

Dpn+1(i) =

nY
i=1

Di ·Dn+1

=

n+1Y
i=1

Di,

which is what we wanted to show; see (1.23).
We conclude that (1.21) is proved by induction. �

Problem 6: (i) Let A be an n× n matrix and let L be an n× n nonsingular lower
triangular matrix. Show that, if LA is a lower triangular matrix, then A is lower
triangular. Show that, if AL is a lower triangular matrix, then A is lower triangular.

(ii) Let A be an n× n matrix and let U be an n × n nonsingular upper triangular
matrix. Show that, if UA is an upper triangular matrix, then A is upper triangular.
Show that, if AU is an upper triangular matrix, then A is upper triangular.

Solution: (i) Recall that the inverse of a nonsingular lower triangular matrix is a
lower triangular matrix, and that the product of two lower triangular matrices is a
lower triangular matrix.

Let L1 = LA be a lower triangular matrix. Since L is nonsingular, we obtain that

L−1L1 = L−1(LA) = (L−1L)A = I ·A = A,

since LL−1 = I .
Note that L−1 is a lower triangular matrix since it is the inverse of the lower

triangular matrix L. Thus, A = L−1L1 is a lower triangular matrix since it is the
product of the lower triangular matrices L−1 and L1.

Similarly, let L2 = AL be a lower triangular matrix. Since L is nonsingular, we
obtain that

L2L
−1 = (AL)L−1 = A(LL−1) = A · I = A.
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Thus, A = L2L
−1 is a lower triangular matrix since it is the product of the lower

triangular matrices L2 and L−1.

(ii) Proofs along the lines of the proofs given at (i) for lower triangular matrices can
be given to the corresponding results for upper triangular matrices; for completeness,
we include them below.

However, if the results from (i) for lower triangular matrices are known, then the
corresponding results for upper triangular matrices can be obtained by using matrix
transposition as follows:

Recall that the inverse of a nonsingular upper triangular matrix is an upper tri-
angular matrix, and that the product of two upper triangular matrices is an upper
triangular matrix.

Let U be a nonsingular upper triangular matrix. Then, the transpose U t of the
matrix U is lower triangular and nonsingular since det(U t) = det(U) �= 0. Assume
that the matrix UA is an upper triangular matrix. Then, (UA)t = AtU t is a lower
triangular matrix.

Recall from (i) that, if L is a nonsingular lower triangular matrix and if AL is a
lower triangular matrix, then A is lower triangular. In our case, U t is a nonsingular
lower triangular matrix and AtU t is lower triangular. We conclude that At is a lower
triangular matrix, and therefore that A is an upper triangular matrix, which is what
we wanted to show.

Similarly, let U be a nonsingular upper triangular matrix, and assume that the
matrix AU is an upper triangular matrix. Then, (AU)t = U tAt is a lower triangular
matrix.

Recall from (i) that, if L is a nonsingular lower triangular matrix and if LA is a
lower triangular matrix, then A is lower triangular. In our case, U t is a nonsingular
lower triangular matrix and U tAt is lower triangular. We conclude that At is a lower
triangular matrix, and therefore that A is an upper triangular matrix.

Proofs not using the results for lower triangular matrices are included below:

Let U1 = UA be an upper triangular matrix, where U is a nonsingular upper
triangular matrix. Then,

U−1U1 = U−1(UA) = (U−1U)A = A,

since U−1U = I .
Note that U−1 is an upper triangular matrix since it is the inverse of the upper

triangular matrix U . Thus, A = U−1U1 is an upper triangular matrix since it is the
product of the upper triangular matrices U−1 and U1.

Similarly, let U2 = AU be an upper triangular matrix. Since U is nonsingular, we
obtain that

U2U
−1 = (AU)U−1 = A(UU−1) = A.

Thus, A = U2U
−1 is an upper triangular matrix since it is the product of the upper

triangular matrices U2 and U−1. �

Problem 7: Let A be a nonsingular matrix, and let k be a positive integer. Define

A−k as the k–th power of the inverse matrix of A, i.e., let A−k =
`
A−1

´k
. Show that

this definition is consistent, i.e., show that Ak ·A−k = A−k ·Ak = I .
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Solution: Since A−k =
`
A−1

´k
, we obtain that

Ak ·A−k = Ak · `A−1´k

= Ak−1 ·A ·A−1 · `A−1´k−1
= Ak−1 · `A−1´k−1

= Ak−2 ·A ·A−1 · `A−1´k−2
= Ak−2 · `A−1´k−2

= . . .

= A2 · `A−1
´2

= A ·A ·A−1 · A−1 = A ·A−1

= I ;

here we used repeatedly the fact that A ·A−1 = I .
Thus, Ak · A−k = I . We conclude that A−k is the inverse matrix of Ak, and

therefore A−k ·Ak = I . �

Problem 8: (i) Let

M =

0B@ 0 0 0 0
3 0 0 0
1 −1 0 0
−1 2 1 0

1CA .

Compute M2, M3, M4.

(ii) Let

C = I + M =

0B@ 1 0 0 0
3 1 0 0
1 −1 1 0
−1 2 1 1

1CA .

Compute Cm, where m ≥ 2 is a positive integer.

Solution: (i) By direct computation, we find that

M2 =

0B@ 0 0 0 0
0 0 0 0
−3 0 0 0
7 −1 0 0

1CA ; M3 =

0B@ 0 0 0 0
0 0 0 0
0 0 0 0
−3 0 0 0

1CA ; M4 = 0. (1.31)

(ii) Recall that, if A and B are square matrices of the same size such that AB = BA,
then the following version of the binomial formula holds true:

(A + B)m =

mX
j=0

„
m
j

«
AjBm−j , (1.32)

where m is a positive integer and the binomial coefficient

„
m
j

«
is given by

„
m
j

«
=

m!

j! (m− j)!
, (1.33)
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where k! = 1 · 2 · . . . · k. Also, by definition, A0 = B0 = I .

Let A = M and B = I in (1.32), and note from (1.31) that M j = 0 for all j ≥ 4.
Then,

Cm = (M + I)m =
mX

j=0

„
m
j

«
M j =

3X
j=0

„
m
j

«
M j

=

„
m
0

«
I +

„
m
1

«
M +

„
m
2

«
M2 +

„
m
3

«
M3. (1.34)

From (1.33), we obtain that„
m
0

«
= 1;

„
m
1

«
= m;

„
m
2

«
=

m(m− 1)

2
;

„
m
3

«
=

m(m− 1)(m − 2)

6
.

Then, using the values of M2 and M3 from (1.31), we conclude from (1.34) that

Cm =

„
m
0

«
I +

„
m
1

«
M +

„
m
2

«
M2 +

„
m
3

«
M3

= I + mM +
m(m− 1)

2
M2 +

m(m− 1)(m− 2)

6
M3

= I +

0B@ 0 0 0 0
3m 0 0 0
m −m 0 0
−m 2m m 0

1CA +

0BB@
0 0 0 0
0 0 0 0

− 3m(m−1)
2

0 0 0
7m(m−1)

2
−m(m−1)

2
0 0

1CCA

+

0B@
0 0 0 0
0 0 0 0
0 0 0 0

− 3m(m−1)(m−2)
6 0 0 0

1CA

=

0BB@
1 0 0 0

3m 1 0 0
5m−3m2

2
−m 1 0

−33m+30m2−3m3

6
5m−m2

2
m 1

1CCA �

Problem 9: Let L be an n× n lower triangular matrix with entries equal to 0 on
the main diagonal, i.e., with L(i, i) = 0 for i = 1 : n.

(i) Show that Ln = 0;

(ii) Compute (I+L)m in terms of L, L2, . . . , Ln−1, where m ≥ n is a positive integer.

Solution: (i) To show that Ln = 0, we will prove by induction the following result:

“The first i rows of the matrix Li are zero vectors, for any 1 ≤ i ≤ n.”

For i = 1, the first row of the matrix L is a zero vector, since L is lower triangular
and therefore L(1, k) = 0 for 2 ≤ k ≤ n, and L(1, 1) = 0 since the main diagonal
entries of L are 0.



16 CHAPTER 1. VECTORS AND MATRICES

Let 2 ≤ i ≤ n− 1. Assume that the first i rows of the matrix Li are zero vectors
and let

Li =

0BBBBBBBB@

0
...
0

r
(i)
i+1

...

r
(i)
n

1CCCCCCCCA
(1.35)

be the row form of Li. We will show that the first (i + 1) rows of the matrix Li+1

are zero vectors.
Let

Li+1 =

0BBBB@
r
(i+1)
1

r
(i+1)
2

...

r
(i+1)
n

1CCCCA
be the row form of the matrix Li+1. Note that Li+1 = L · Li and therefore the j–th
row of Li+1 is a linear combination of the rows of Li with coefficients the entries of
the j–th row of L, i.e.,

r
(i+1)
j =

nX
k=1

L(j, k) r
(i)
k , ∀ j = 1 : n. (1.36)

Note that L(j, j) = 0, since all the main diagonal entries of L are 0, and L(j, k) = 0
for j + 1 ≤ k ≤ n, since L is a lower triangular matrix. Then, (1.36) can be written
as

r
(i+1)
j =

j−1X
k=1

L(j, k) r
(i)
k , ∀ j = 1 : n. (1.37)

Since r
(i)
1 = r

(i)
2 = . . . = r

(i)
i , see (1.35), it follows from (1.37) that

r
(i+1)
1 = 0;

r
(i+1)
2 = L(2, 1) r

(i)
1 = 0;

r
(i+1)
3 =

2X
k=1

L(3, k) r
(i)
k = L(3, 1) r

(i)
1 + L(3, 2) r

(i)
2 = 0;

...

r
(i+1)
i+1 =

iX
k=1

L(i + 1, k) r
(i)
k

= L(i + 1, 1) r
(i)
1 + L(i + 1, 2) r

(i)
2 + . . . + L(i + 1, i) r

(i)
i

= 0.

In other words, r
(i+1)
1 = r

(i+1)
2 = . . . = r

(i+1)
i+1 = 0, i.e., the first (i + 1) rows of the

matrix Li+1 are zero vectors.
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This completes the proof by induction of the fact that the first i rows of the matrix
Li are zero vectors, for all 1 ≤ i ≤ n.

Thus, the first n rows of the matrix Ln are zero vectors, and, since Ln is an n×n
matrix, we conclude that Ln = 0.

(ii) Let m ≥ n. Let A = L and B = I in the binomial formula (1.32). Since Lj = 0
for all j ≥ n, we obtain that

(I + L)m = (L + I)m =

mX
j=0

„
m
j

«
Lj =

n−1X
j=0

„
m
j

«
Lj

= I + mL +

„
m
2

«
L2 + . . . + +

„
m

n− 1

«
Ln−1. �

Problem 10: Let A and B be square matrices of the same size with nonnegative
entries and such that the sum of the entries in each row is equal to 1. Show that the
matrix AB has the same properties, i.e., show that all the entries of the matrix AB
are nonnegative and the sum of the entries in each row of AB is equal to 1.

Solution: A matrix with nonnegative entries such that the sum of the entries in each
row is equal to 1 is called a probability matrix. Thus, the problem can be restated
as follows:

Let A and B be probability matrices of the same size. Show that AB is a probability
matrix.

We first establish the following equivalent definition for a probability matrix:

The n × n matrix M is a probability matrix if and only if all the entries of M are
nonnegative and

M1 = 1, (1.38)

where 1 is the n× 1 column vector with all entries equal to 1.

To see this, let M = row (rj)j=1:n be the row form of the matrix M , where rj is
an 1×n row vector, for j = 1 : n. The sum of all the entries in the j-th row rj of M
can be written as follows:1

nX
k=1

rj(k) = rj1. (1.39)

Thus, the definition of a probability matrix as a matrix with the sum of the entries
in each row equal to 1 can be written as

nX
k=1

rj(k) = 1, ∀ j = 1 : n

⇐⇒ rj1 = 1, ∀ j = 1 : n

⇐⇒ (rj1)j=1:n = 1

⇐⇒ M1 = 1,
1Note that rj is an 1 × n vector and 1 is an n × 1 vector, and therefore the expression rj1

from (1.39) is consistent.
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since M1 = (rj1)j=1:n if M = row (rj)j=1:n is the row form of M .
In other words, we established that (1.38) is an equivalent condition for M to be

a probability matrix.

Let A and B be probability matrices. Then all the entries of A and B are non-
negative, and therefore all the entries of AB are also nonnegative.2 From (1.38), it
follows that

A1 = 1 and B1 = 1,

and therefore

(AB)1 = A(B1) = A1 = 1. (1.40)

Then, from (1.38) and (1.40), we conclude that AB is a probability matrix, which
is what we wanted to show. �

Problem 11: The covariance matrix of five random variables is

Σ =

0BBB@
1 −0.525 1.375 −0.075 −0.75

−0.525 2.25 0.1875 0.1875 −0.675
1.375 0.1875 6.25 0.4375 −1.875
−0.075 0.1875 0.4375 0.25 0.3
−0.75 −0.675 −1.875 0.3 9

1CCCA . (1.41)

Find the correlation matrix of these random variables.

Solution: Recall that the correlation matrix Ω and the covariance matrix Σ of n
nonconstant random variables X1, X2, . . . Xn satisfy the following relationship:

Ω = (Dσ)−1Σ(Dσ)−1, (1.42)

where Dσ is the diagonal matrix given by Dσ = diag(σi)i=1:n; here, σi denotes the
standard deviation of the random variable Xi, for i = 1 : n.

From (1.41), we find that the standard deviations of the five random variables are

σ1 =
p

Σ(1, 1) = 1; σ2 =
p

Σ(2, 2) = 1.5; σ3 =
p

Σ(3, 3) = 2.5;

σ4 =
p

Σ(4, 4) = 0.5; σ5 =
p

Σ(5, 5) = 3,

and therefore

Dσ = diag(σi)i=1:5 =

0BBB@
1 0 0 0 0
0 1.5 0 0 0
0 0 2.5 0 0
0 0 0 0.5 0
0 0 0 0 3

1CCCA . (1.43)

2Formally, the fact that all the entries of the matrix AB are nonnegative if all the entries of
A and B are nonnegative can be proved as follows:

(AB)(j, k) =
nX

i=1

A(j, i)B(i, k) ≥ 0, ∀ 1 ≤ j, k ≤ n,

if A(j, i) ≥ 0 for all 1 ≤ i, j ≤ n and B(i, k) ≥ 0 for all 1 ≤ i, k ≤ n.
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Then, from (1.42) and (1.43), we obtain that the correlation matrix of the five
random variables is

Ω =

0BBB@
1 −0.35 0.55 −0.15 −0.25

−0.35 1 0.05 0.25 −0.15
0.55 0.05 1 0.35 −0.25
−0.15 0.25 0.35 1 0.20
−0.25 −0.15 −0.25 0.20 1

1CCCA . �

Problem 12: The correlation matrix of five random variables is

Ω =

0BBB@
1 −0.25 0.15 −0.05 −0.30

−0.25 1 −0.10 −0.25 0.10
0.15 −0.10 1 0.20 0.05
−0.05 −0.25 0.20 1 0.10
−0.30 0.10 0.05 0.10 1

1CCCA (1.44)

(i) Compute the covariance matrix of these random variables if their standard devi-
ations are 0.25, 0.5, 1, 2, and 4, in this order.

(ii) Compute the covariance matrix of these random variables if their standard devi-
ations are 4, 2, 1, 0.5, and 0.25, in this order.

Solution: The covariance matrix Σ and the correlation matrix Ω of n random vari-
ables X1, X2, . . . Xn satisfy the following relationship:

Σ = DσΩDσ, (1.45)

where Dσ is the diagonal matrix given by Dσ = diag(σi)i=1:n; here, σi denotes the
standard deviation of the random variable Xi, for i = 1 : n.

(i) If the standard deviations of the random variables are 0.25, 0.5, 1, 2, and 4, then

Dσ =

0BBB@
0.25 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 4

1CCCA , (1.46)

and, from (1.45) and using (1.44) and (1.46), we obtain that the covariance matrix
of the random variables is

Σ =

0BBB@
0.0625 −0.0312 0.0375 −0.025 −0.3
−0.0312 0.25 −0.05 −0.25 0.2
0.0375 −0.05 1 0.4 0.2
−0.025 −0.25 0.4 4 0.8
−0.3 0.20 0.2 0.8 16

1CCCA .

(ii) If the standard deviations of the random variables are 4, 2, 1, 0.5, and 0.25, then

Dσ =

0BBB@
4 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 0.5 0
0 0 0 0 0.25

1CCCA , (1.47)
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and, from (1.45) and using (1.44) and (1.47), we obtain that the covariance matrix
of the random variables is

Σ =

0BBB@
16 −2 0.6 −0.1 −0.3
−2 4 −0.2 −0.25 0.05
0.6 −0.2 1 0.1 0.0125
−0.1 −0.25 0.1 0.25 0.0125
−0.3 0.05 0.0125 0.0125 0.0625

1CCCA . �

Problem 13: The file indeces-jul26-aug9-2012.xlsx from fepress.org/nla-primer con-
tains the July 26, 2012 – August 9, 2012 end of day values of Dow Jones, Nasdaq,
and S&P 500.

(i) Compute the daily percentage returns of the three indices over the given time
period.

(ii) Compute the covariance matrix of the daily percentage returns of the three in-
dices.

(iii) Compute the daily log returns of the three indices over the given time period.

(iv) Compute the covariance matrix of the daily log returns of the three indices.

Solution: The July 26, 2012 – August 9, 2012 end of day values of Dow Jones,
Nasdaq, and S&P 500 were:

Date Dow Jones NASDAQ S&P 500
07/26/2012 12887.93 2893.25 1360.02
07/27/2012 13075.66 2958.09 1385.97
07/30/2012 13073.01 2945.84 1385.30
07/31/2012 13008.68 2939.52 1379.32
08/01/2012 12976.13 2920.21 1375.32
08/02/2012 12878.88 2909.77 1365.00
08/03/2012 13096.17 2967.90 1390.99
08/06/2012 13117.51 2989.91 1394.23
08/07/2012 13168.60 3015.86 1401.35
08/08/2012 13175.64 3011.25 1402.22
08/09/2012 13165.19 3018.64 1402.80

.

(i) The percentage return between times t1 and t2 of an asset with price S(t) at time

t is given by S(t2)−S(t1)
S(t1)

. Then, the time series matrix of the daily percentage returns

of the three indices between 07/26/2012 and 08/09/2012 is

T
(p)
X

=

0BBBBBBBBBBBB@

0.014566 0.022411 0.019081
−0.000203 −0.004141 −0.000483
−0.004921 −0.002145 −0.004317
−0.002502 −0.006569 −0.002900
−0.007495 −0.003575 −0.007504
0.016872 0.019978 0.019040
0.001629 0.007416 0.002329
0.003895 0.008679 0.005107
0.000535 −0.001529 0.000621
−0.000793 0.002454 0.000414

1CCCCCCCCCCCCA
, (1.48)
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where, e.g., the percentage return on 08/08/2012 of NASDAQ is

3011.25− 3015.86

3015.86
= − 0.001529 = T

(p)
X

(9, 2).

(ii) The sample means of the daily returns of the three indices are 0.002158 (Dow
Jones), 0.004298 (NASDAQ), and 0.003139 (S&P 500). By subtracting the sample

mean of each column from T
(p)
X , see (1.48), we obtain that the time series matrix of

mean normalized daily percentage returns of the three indices is

T
(p)
X =

0BBBBBBBBBBBB@

0.012408 0.018113 0.015942
−0.002361 −0.008439 −0.003622
−0.007079 −0.006443 −0.007456
−0.004661 −0.010867 −0.006039
−0.009653 −0.007873 −0.010642
0.014713 0.015680 0.015902
−0.000529 0.003118 −0.000809
0.001736 0.004381 0.001968
−0.001624 −0.005826 −0.002518
−0.002952 −0.001844 −0.002725

1CCCCCCCCCCCCA
.

Note that T
(p)
X is a 10×3 matrix, corresponding to N = 10 daily returns computed

from the 11 daily closes.
The covariance matrix of the daily percentage returns of the three indices is

bΣ(p)
X

=
1

N − 1
(T

(p)
X )tT

(p)
X

=

0@ 0.000061742 0.000074276 0.000071106
0.000074276 0.000103667 0.000087988
0.000071106 0.000087988 0.000082637

1A .

(iii) The log return between times t1 and t2 of an asset with price S(t) at time t is

given by ln
“

S(t2)
S(t1)

”
. Then, the time series matrix of the daily log returns of the three

indices between 07/26/2012 and 08/09/2012 is

T
(log)
X =

0BBBBBBBBBBBB@

0.014461 0.022163 0.018901
−0.000203 −0.004150 −0.000484
−0.004933 −0.002148 −0.004326
−0.002505 −0.006591 −0.002904
−0.007523 −0.003581 −0.007532
0.016731 0.019781 0.018861
0.001628 0.007389 0.002327
0.003887 0.008642 0.005094
0.000534 −0.001530 0.000621
−0.000793 0.002451 0.000414

1CCCCCCCCCCCCA
, (1.49)

where, e.g., the log return on 08/01/2012 of S&P 500 is

ln

„
1375.32

1379.32

«
= − 0.002904 = T

(log)
X (4, 3).

(iv) The sample means of the log returns of the three indices are 0.002129 (Dow
Jones), 0.004243 (NASDAQ), and 0.003097 (S&P 500). By subtracting the sample
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mean of each column from T
(log)
X , see (1.49), we obtain that the time series matrix

of mean normalized log percentage returns of the three indices is

T
(log)
X =

0BBBBBBBBBBBB@

0.012333 0.017921 0.015804
−0.002331 −0.008392 −0.003581
−0.007061 −0.006390 −0.007423
−0.004634 −0.010833 −0.006001
−0.009651 −0.007824 −0.010629
0.014603 0.015538 0.015764
−0.000500 0.003146 −0.000771
0.001759 0.004399 0.001997
−0.001594 −0.005772 −0.002476
−0.002922 −0.001791 −0.002684

1CCCCCCCCCCCCA
.

Note that T
(log)
X is a 10 × 3 matrix, corresponding to N = 10 daily returns com-

puted from the 11 daily closes.

The covariance matrix of the daily log returns of the three indices is

bΣ(log)
X

=
1

N − 1
(T

(log)
X )tT

(log)
X

=

0@ 0.000061075 0.000073212 0.000070216
0.000073212 0.000102023 0.000086587
0.000070216 0.000086587 0.000081456

1A . �

Problem 14: The file indices-july2011.xlsx from fepress.org/nla-primer contains the
January 2011 – July 2011 end of day values of nine major US indices.

(i) Compute the sample covariance matrix of the daily percentage returns of the
indices, and the corresponding sample correlation matrix.

Compute the sample covariance and correlation matrices for daily log returns, and
compare them with the corresponding matrices for daily percentage returns.

(ii) Compute the sample covariance matrix of the weekly percentage returns of the
indices, and the corresponding sample correlation matrix.

Compute the sample covariance and correlation matrices for weekly log returns,
and compare them with the corresponding matrices for weekly percentage returns.

(iii) Compute the sample covariance matrix of the monthly percentage returns of the
indices, and the corresponding sample correlation matrix.

Compute the sample covariance and correlation matrices for monthly log returns,
and compare them with the corresponding matrices for monthly percentage returns.

(iv) Comment on the differences between the sample covariance and correlation ma-
trices for daily, weekly, and monthly returns.

Solution: (i) The sample covariance matrix of the daily percentage returns of the
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indices, and the corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

100.04 67.04 96.67 40.04 82.77 78.90 74.35 71.11 54.56
67.04 58.16 71.29 38.01 65.29 61.38 59.63 52.87 41.99
96.67 71.29 135.88 45.36 86.15 83.05 77.46 60.15 57.46
40.04 38.01 45.36 44.84 43.20 40.10 39.37 34.60 30.43
82.77 65.29 86.15 43.20 82.37 74.46 71.37 73.05 54.01
78.90 61.38 83.05 40.10 74.46 69.77 66.94 61.80 46.55
74.35 59.63 77.46 39.36 71.37 66.94 65.17 58.66 43.66
71.11 52.87 60.15 34.60 73.05 61.80 58.66 103.96 50.01
54.56 41.99 57.46 30.43 54.01 46.55 43.66 50.01 110.84

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.8790 0.8292 0.5979 0.9118 0.9444 0.9208 0.6972 0.5181
0.8790 1 0.8019 0.7444 0.9433 0.9634 0.9686 0.6799 0.5229
0.8292 0.8019 1 0.5812 0.8143 0.8529 0.8232 0.5061 0.4682
0.5979 0.7444 0.5812 1 0.7109 0.7169 0.7282 0.5067 0.4316
0.9118 0.9433 0.8143 0.7109 1 0.9821 0.9742 0.7894 0.5652
0.9444 0.9634 0.8529 0.7169 0.9821 1 0.9927 0.7256 0.5293
0.9208 0.9686 0.8232 0.7282 0.9742 0.9927 1 0.7126 0.5137
0.6972 0.6799 0.5061 0.5067 0.7894 0.7256 0.7126 1 0.4659
0.5181 0.5229 0.4682 0.4316 0.5652 0.5293 0.5137 0.4659 1

1
CCCCCCCCCCCA

The sample covariance matrix of the daily log returns of the indices, and the
corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

100.40 67.27 97.25 40.15 83.13 79.21 74.63 71.38 54.60
67.27 58.32 71.57 38.09 65.53 61.58 59.82 53.06 41.99
97.25 71.57 136.67 45.46 86.59 83.46 77.81 60.39 57.57
40.15 38.09 45.46 44.90 43.34 40.20 39.47 34.76 30.56
83.13 65.53 86.59 43.34 82.72 74.76 71.65 73.33 54.04
79.21 61.58 83.46 40.20 74.76 70.03 67.18 62.04 46.58
74.63 59.82 77.81 39.47 71.65 67.18 65.39 58.88 43.66
71.38 53.06 60.39 34.76 73.33 62.04 58.88 104.16 50.06
54.60 41.99 57.57 30.56 54.04 46.58 43.66 50.06 111.05

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.8791 0.8302 0.5980 0.9121 0.9447 0.9210 0.6981 0.5171
0.8791 1 0.8017 0.7444 0.9435 0.9635 0.9687 0.6808 0.5218
0.8302 0.8017 1 0.5803 0.8144 0.8531 0.8232 0.5062 0.4673
0.5980 0.7444 0.5803 1 0.7111 0.7169 0.7283 0.5083 0.4327
0.9121 0.9435 0.8144 0.7111 1 0.9822 0.9742 0.7900 0.5638
0.9447 0.9635 0.8531 0.7169 0.9822 1 0.9927 0.7264 0.5281
0.9210 0.9687 0.8232 0.7283 0.9742 0.9927 1 0.7134 0.5124
0.6981 0.6808 0.5062 0.5083 0.7900 0.7264 0.7134 1 0.4654
0.5171 0.5218 0.4673 0.4327 0.5638 0.5281 0.5124 0.4654 1

1
CCCCCCCCCCCA

Since log returns are excellent approximations for percentage returns in the case
of small returns such as daily returns, the sample covariance and correlation matrices
for daily percentage returns and for daily log returns are very close to each other.

(ii) The sample covariance matrix of the weekly percentage returns3 of the indices,

3The weekly returns are computed using the end of day price from the last trading day of the
prior week and the end of day price from the last trading day of the current week, i.e., the “Friday
to Friday” convention.
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and the corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

499.83 344.14 453.90 208.79 398.01 391.49 378.60 411.23 317.36
344.14 289.74 355.05 181.11 306.84 302.12 297.39 276.41 244.01
453.90 355.05 678.75 253.15 383.24 392.69 371.69 276.45 306.13
208.79 181.11 253.15 222.43 179.49 192.78 190.84 104.43 188.94
398.01 306.84 383.24 179.49 372.05 344.68 336.28 391.27 271.59
391.49 302.12 392.69 192.78 344.68 335.21 326.99 327.86 263.23
378.60 297.39 371.69 190.84 336.28 326.99 323.48 316.18 256.98
411.23 276.41 276.45 104.43 391.27 327.86 316.18 656.36 258.95
317.36 244.01 306.13 188.94 271.59 263.23 256.98 258.95 410.64

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.9043 0.7793 0.6262 0.9230 0.9564 0.9416 0.7180 0.7005
0.9043 1 0.8006 0.7134 0.9346 0.9694 0.9714 0.6338 0.7074
0.7793 0.8006 1 0.6515 0.7626 0.8233 0.7932 0.4142 0.5799
0.6262 0.7134 0.6515 1 0.6240 0.7060 0.7115 0.2733 0.6252
0.9230 0.9346 0.7626 0.6240 1 0.9760 0.9694 0.7918 0.6948
0.9564 0.9694 0.8233 0.7060 0.9760 1 0.9930 0.6990 0.7095
0.9416 0.9714 0.7932 0.7115 0.9694 0.9930 1 0.6862 0.7051
0.7180 0.6338 0.4142 0.2733 0.7918 0.6990 0.6862 1 0.4988
0.7005 0.7074 0.5799 0.6252 0.6948 0.7095 0.7051 0.4988 1

1
CCCCCCCCCCCA

The sample covariance matrix of the weekly log returns of the indices, and the
corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

493.00 337.88 448.96 206.47 391.99 385.37 372.19 407.91 310.63
337.88 284.42 349.79 178.75 301.59 296.86 291.97 272.65 237.68
448.96 349.79 676.39 249.89 378.35 388.15 366.51 272.85 298.99
206.47 178.75 249.89 223.35 177.08 190.72 188.71 102.76 185.58
391.99 301.59 378.35 177.08 366.86 339.41 330.83 388.38 265.44
385.37 296.86 388.15 190.72 339.41 329.97 321.52 324.24 257.08
372.19 291.97 366.51 188.71 330.83 321.52 317.81 312.58 250.61
407.91 272.65 272.85 102.76 388.38 324.24 312.58 655.52 256.49
310.63 237.68 298.99 185.58 265.44 257.08 250.61 256.49 406.67

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.9023 0.7775 0.6222 0.9217 0.9555 0.9403 0.7175 0.6937
0.9023 1 0.7975 0.7092 0.9337 0.9690 0.9711 0.6314 0.6989
0.7775 0.7975 1 0.6429 0.7595 0.8216 0.7905 0.4098 0.5701
0.6222 0.7092 0.6429 1 0.6186 0.7025 0.7083 0.2686 0.6158
0.9217 0.9337 0.7595 0.6186 1 0.9755 0.9689 0.7920 0.6872
0.9555 0.9690 0.8216 0.7025 0.9755 1 0.9929 0.6972 0.7018
0.9403 0.9711 0.7905 0.7083 0.9689 0.9929 1 0.6848 0.6971
0.7175 0.6314 0.4098 0.2686 0.7920 0.6972 0.6848 1 0.4968
0.6937 0.6989 0.5701 0.6158 0.6872 0.7018 0.6971 0.4968 1

1
CCCCCCCCCCCA

Weekly log returns are very good approximations for weekly percentage returns,
and therefore the sample covariance and correlation matrices for weekly percentage
returns and for weekly log returns are close to each other.

(iii) The monthly4 percentage returns of the nine indices are

0.0178 0.0272 −0.0160 0.0108 0.0220 0.0226 0.0236 −0.0165 −0.0252
0.0304 0.0281 0.0119 0.0153 0.0368 0.0320 0.0289 0.0963 −0.0162
−0.0004 0.0076 0.0423 −0.0061 −0.0040 −0.0010 −0.0054 −0.0058 0.0055
0.0332 0.0398 0.0406 0.0387 0.0317 0.0285 0.0263 0.0488 0.0246
−0.0133 −0.0188 −0.0082 0.0170 −0.0224 −0.0135 −0.0181 −0.0185 −0.0099
−0.0218 −0.0124 −0.0084 −0.0066 −0.0187 −0.0183 −0.0168 −0.0383 −0.0314

4The monthly returns are computed using the end of day price from the last trading day of
the prior month and the end of day price from the last trading day of the current month.
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The sample covariance matrix of the monthly percentage returns of the indices
and the corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

529.78 526.36 244.69 267.24 584.63 503.19 497.53 967.95 218.71
526.36 565.13 271.06 231.25 594.65 504.06 509.56 839.03 216.96
244.69 271.06 664.65 104.25 214.54 174.44 139.12 586.15 465.90
267.24 231.25 104.25 285.36 254.10 230.93 221.68 480.23 209.20
584.63 594.65 214.54 254.10 672.48 568.58 572.66 1076.07 162.90
503.19 504.06 174.44 230.93 568.58 488.24 488.07 899.60 151.06
497.53 509.56 139.12 221.68 572.66 488.07 494.77 852.96 119.97
967.95 839.03 586.15 480.23 1076.07 899.60 852.96 2609.89 397.89
218.71 216.96 465.90 209.20 162.90 151.06 119.97 397.89 431.37

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.9620 0.4124 0.6873 0.9795 0.9894 0.9718 0.8232 0.4575
0.9620 1 0.4423 0.5758 0.9646 0.9596 0.9637 0.6909 0.4394
0.4124 0.4423 1 0.2394 0.3209 0.3062 0.2426 0.4450 0.8701
0.6873 0.5758 0.2394 1 0.5801 0.6187 0.5900 0.5565 0.5963
0.9795 0.9646 0.3209 0.5801 1 0.9923 0.9928 0.8123 0.3025
0.9894 0.9596 0.3062 0.6187 0.9923 1 0.9930 0.7969 0.3292
0.9718 0.9637 0.2426 0.5900 0.9928 0.9930 1 0.7506 0.2597
0.8232 0.6909 0.4450 0.5565 0.8123 0.7969 0.7506 1 0.3750
0.4575 0.4394 0.8701 0.5963 0.3025 0.3292 0.2597 0.3750 1

1
CCCCCCCCCCCA

The sample covariance matrix of the monthly log returns of the indices, and the
corresponding sample correlation matrix are

10−6
·

0
BBBBBBBBBBB@

523.10 517.96 240.42 261.17 576.86 496.69 491.77 939.22 217.82
517.96 554.85 265.01 223.42 586.02 496.14 502.49 814.35 213.56
240.42 265.01 645.86 99.41 211.91 172.23 137.85 578.67 460.57
261.17 223.42 99.41 277.29 248.02 226.08 217.18 467.24 204.91
576.86 586.02 211.91 248.02 663.64 560.78 565.98 1039.55 162.04
496.69 496.14 172.23 226.08 560.78 481.52 482.06 871.09 150.94
491.77 502.49 137.85 217.18 565.98 482.06 489.54 827.20 119.56
939.22 814.35 578.67 467.24 1039.55 871.09 827.20 2464.76 403.04
217.82 213.56 460.57 204.91 162.04 150.94 119.56 403.04 434.42

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0.9614 0.4136 0.6857 0.9791 0.9897 0.9718 0.8272 0.4569
0.9614 1 0.4427 0.5696 0.9657 0.9599 0.9642 0.6964 0.4350
0.4136 0.4427 1 0.2349 0.3237 0.3088 0.2452 0.4586 0.8695
0.6857 0.5696 0.2349 1 0.5782 0.6187 0.5895 0.5652 0.5904
0.9791 0.9657 0.3237 0.5782 1 0.9920 0.9930 0.8128 0.3018
0.9897 0.9599 0.3088 0.6187 0.9920 1 0.9929 0.7996 0.3300
0.9718 0.9642 0.2452 0.5895 0.9930 0.9929 1 0.7531 0.2593
0.8272 0.6964 0.4586 0.5652 0.8128 0.7996 0.7531 1 0.3895
0.4569 0.4350 0.8695 0.5904 0.3018 0.3300 0.2593 0.3895 1

1
CCCCCCCCCCCA

It is not a priori clear how well do monthly log returns approximate monthly
percentage returns, although they should be reasonably close to each other. However,
as can be seen above, it turns out that the sample covariance and correlation matrices
for monthly percentage returns and for monthly log returns are very close to each
other for this particular set of prices.

(iv) Monthly returns are, generally speaking, likely to be larger than weekly returns,
which are likely to be larger than daily returns. We note that the entries of the
sample covariance matrices for daily returns are clearly smaller than the entries of
the sample covariance matrices for weekly and monthly returns.
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The entries of the sample covariance matrices for monthly returns are typically
greater than the entries of the sample covariance matrices for weekly returns. How-
ever, some of the entries of the sample covariance matrices for weekly returns are
larger than the corresponding entries of the sample covariance matrices for monthly
returns. These results hold for both percentage and log returns.

The connections between the sample correlation matrices for daily, weekly, and
monthly returns are less clear–cut. �

Problem 15: In three months, the value of an asset with spot price $50 will be
either $60 or $45. The continuously compounded risk–free rate is 6%. Consider the
one period market model with two securities, i.e., cash and the asset, and two states,
i.e., asset value equal to $60 and asset value equal to $45, in three months.

(i) Find the payoff matrix of this model.

(ii) Is this one period market complete, i.e., is the payoff matrix nonsingular?

(iii) How do you replicate a three months at–the–money put option on this asset,
using the cash and the underlying asset?

Solution: The three months one period market model considered here has the fol-
lowing two securities and two states:

Securities:
• cash;
• asset;

Market states:
• asset at $60 (state ω1);
• asset at $45 (state ω2).

(i) Note that, for a continuously compounded risk–free rate of 6%, the future value

in three months of $1 today is e0.06· 3
12 = 1.015113.

Then, the payoff matrix of this one period market model corresponding to a $1
cash position and to an asset position equal to one unit is

Mτ =

„
1.015113 1.015113

60 45

«
.

(ii) The payoff matrix Mτ is nonsingular since

det(Mτ ) = 1.015113 · 45− 1.015113 · 60 = − 15.23 �= 0.

We conclude that the one period market model is complete.

(iii) The payoff at maturity of a put option is

P (T ) = max(K − S(T ), 0) =

j
0, if S(T ) ≥ K ;

K − S(T ), if S(T ) < K.
(1.50)

From (1.50), we obtain that the values at maturity (i.e., in three months) of
at–the–money (ATM) put with strike $50 on the asset are given by

P (1/4) = max(50− S(1/4), 0),
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where S(1/4) denotes the value of the asset in three months, and are as follows:

state ω1 : S(1/4) = 60 and P (1/4) = max(50− 60, 0) = 0;
state ω2 : S(1/4) = 45 and P (1/4) = max(50− 45, 0) = 5.

Thus, the vector value P1/4 of the put option in three months is

P1/4 = (0 5). (1.51)

Denote by Θ1 and Θ2 the cash and asset positions, respectively, in a portfolio

replicating the three months ATM put option on the asset, and let Θ =

„
Θ1

Θ2

«
be

the positions vector. Then, the value of the portfolio in three months is

V1/4 = ΘtMτ = (Θ1 Θ2)

„
1.015113 1.015113

60 45

«
. (1.52)

For the portfolio to replicate the three months ATM put, V1/4 and P1/4 must be
equal, i.e., V1/4 = P1/4, which can be written as

(Θ1 Θ2)

„
1.015113 1.015113

60 45

«
= (0 5); (1.53)

see (1.51) and (1.52). By taking the transpose on both sides of (1.53), we obtain that„
1.015113 60
1.015113 45

« „
Θ1

Θ2

«
=

„
0
5

«
. (1.54)

To solve (1.54),5 recall that the inverse of a 2× 2 matrix is given by„
a b
c d

«−1

=
1

ad − bc

„
d −b
−c a

«
.

Then, the solution to (1.54) is„
Θ1

Θ2

«
=

„
1.015113 60
1.015113 45

«−1 „
0
5

«
=

1

−15.2267

„
45 −60

−1.015113 1.015113

« „
0
5

«
=

„
19.7022
−0.3333

«
.

We conclude that the portfolio replicating the three months ATM put option on
the asset is made of a long cash position of $19.7022 and a short 0.3333 = 1

3
position

in the asset. �

5Alternatively, note that (1.54) is equivalent to the linear system

j
1.015113 Θ1 + 60 Θ2 = 0
1.015113 Θ1 + 45 Θ2 = 5

and can be solved as such.
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Problem 16: In six months, the price of an asset with spot price $40 will be either
$30, $35, $40, $42, $45, or $50. Consider a one period market model with six states
in six months corresponding to the six possible values of the asset in six months, and
with the following four securities:

• cash;
• asset;
• six months at-the-money call option with strike $40 on the asset;
• six months at-the-money put option with strike $40 on the asset.

The continuously compounded risk–free interest rate is constant and equal to 6%.

(i) Find the payoff matrix of this model.

(ii) Is this one period market model complete?

(iii) Are the four securities non–redundant?

Solution: (i) This one period market model has the following four assets and six
states in six months:

Securities:
• cash;
• asset;
• six months at-the-money call option with strike $40 on the asset;
• six months at-the-money put option with strike $40 on the asset.

States of the market in six months:
• asset price $30 (state ω1);
• asset price $34 (state ω2);
• asset price $40 (state ω3);
• asset price $42 (state ω4);
• asset price $45 (state ω5);
• asset price $50 (state ω6).

The future value in six months of $1 today corresponding to a continuously com-

pounded 6% constant interest rate is e0.06· 12 = e0.03.
For j = 1 : 6, let Sj,1/2 be the vector of the six possible prices of asset j in six

months. The price vectors S1,1/2 of cash and S2,1/2 of the asset are

S1,1/2 =
`
e0.03 e0.03 e0.03 e0.03 e0.03 e0.03´ ; (1.55)

S2,1/2 = (30 35 40 42 45 50) . (1.56)

Recall that the payoffs at maturity of call and put options are

C(T ) = max(S(T ) −K,0) =

j
S(T ) −K, if S(T ) > K ;

0, if S(T ) ≤ K ;
(1.57)

P (T ) = max(K − S(T ), 0) =

j
0, if S(T ) ≥ K ;

K − S(T ), if S(T ) < K.
(1.58)

From (1.57), we obtain that the values of the six months ATM call with strike $40
on the asset are given by

C(1/2) = max(S(1/2) − 40, 0),
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where S(1/2) denotes the value of the asset in six months, and are as follows:

state ω1 : S(1/2) = 30 and C(1/2) = max(30− 40, 0) = 0;
state ω2 : S(1/2) = 35 and C(1/2) = max(35− 40, 0) = 0;
state ω3 : S(1/2) = 40 and C(1/2) = max(40− 40, 0) = 0;
state ω4 : S(1/2) = 42 and C(1/2) = max(42− 40, 0) = 2;
state ω5 : S(1/2) = 45 and C(1/2) = max(45− 40, 0) = 5;
state ω6 : S(1/2) = 50 and C(1/2) = max(50− 40, 0) = 10.

Thus, the vector S3,1/2 of the six possible prices of the six months ATM call with
strike $40 on the asset is

S3,1/2 = (0 0 0 2 5 10) . (1.59)

From (1.58), we obtain that the values of the six months ATM put with strike $40
on the asset are given by

P (1/2) = max(40− S(1/2), 0),

and are as follows:

state ω1 : S(1/2) = 30 and P (1/2) = max(40− 30, 0) = 10;
state ω2 : S(1/2) = 35 and P (1/2) = max(40− 35, 0) = 5;
state ω3 : S(1/2) = 40 and P (1/2) = max(40− 40, 0) = 0;
state ω4 : S(1/2) = 42 and P (1/2) = max(40− 42, 0) = 0;
state ω5 : S(1/2) = 45 and P (1/2) = max(40− 45, 0) = 0;
state ω6 : S(1/2) = 50 and P (1/2) = max(40− 50, 0) = 0.

Thus, the vector S4,1/2 of the six possible prices of the six months ATM put with
strike $40 on the asset is

S4,1/2 = (10 5 0 0 0 0) . (1.60)

From (1.55), (1.56), (1.59), and (1.60), we conclude that the payoff matrix M1/2

of the market model is the following 4 × 6 matrix:

M1/2 =

0B@ S1,1/2

S2,1/2

S3,1/2

S4,1/2

1CA =

0B@ e0.03 e0.03 e0.03 e0.03 e0.03 e0.03

30 35 40 42 45 50
0 0 0 2 5 10
10 5 0 0 0 0

1CA . (1.61)

(ii) This market model is not complete since it has fewer (four) securities than market
states (six), and a necessary condition for a one period market model to be complete
is that the model has at least as many securities as market states.

(iii) From (1.55), (1.56), (1.59), and (1.60), we obtain that

S4,1/2 + S2,1/2 − S3,1/2 = (40 40 40 40 40 40) =
40

e0.03
S1,1/2 . (1.62)

In other words, the price vectors S1,1/2 , S2,1/2, S3,1/2, and S4,1/2 are not linearly
independent. We conclude that, e.g., the ATM put on the asset can be replicated
using cash and positions on the asset and on ATM calls on the asset, since

S4,1/2 =
40

e0.03
S1,1/2 − S2,1/2 + S3,1/2 ,

and therefore that the ATM put on the asset is a redundant security.6 �

6Note that the redundancy in this model is due to the Put–Call parity; see section 1.2.1 from
Stefanica [3] for more details.


