
116 IV. RANDOM WALKS

§25. Random Walks in Two Dimensions

Let Z
2 denote all points in the Euclidean plane with integer coordinates.

Specifically, Z
2 = {(x, y) : x ∈ Z, y ∈ Z}. We seek to define a random walk on

Z
2, which we will denote by (W (2)

n : n ≥ 0). Here the superscript indicates the
dimension of the process and we will use W

(1)
n to denote a (one dimensional)

simple symmetric random walk on Z, formerly simply called Wn.
Each point (x, y) ∈ Z

2 has four nearest neighbors, north, south, east, and
west, that are a distance 1 from (x, y), namely: (x, y + 1), (x, y − 1), (x + 1, y),
and (x − 1, y). We define a Markov chain (W (2)

n : n ≥ 0) on state space Z
2

as follows. Take W
(2)
0 = (0, 0), so the process starts at the origin. Then,

given W
(2)
n = (x, y), W

(2)
n+1 is one of W

(2)
n ’s four nearest neighbors — each with

probability 1
4 . Stated differently,

W
(2)
n+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W
(2)
n + (+1, 0) with probability 1

4

W
(2)
n + (−1, 0) with probability 1

4

W
(2)
n + (0, +1) with probability 1

4

W
(2)
n + (0,−1) with probability 1

4 ,

where the increment is independent of the process up to time n. We will let
Xn and Yn denote the first and second coordinates of W

(2)
n , respectively, so

W
(2)
n = (Xn, Yn). Figure 25.1 shows a realization of the first 10 steps of such a

walk. Here W10 = (−1,−1), so X10 = Y10 = −1 (the ‘◦’ in the figure).

Figure 25.1. An illustrative realization of W
(2)
n for 0 ≤ n ≤ 10.
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•

◦

This defines a simple symmetric random walk on Z
2. The state space Z

2 is
clearly irreducible under this process and, like the simple symmetric random
walk on Z, it has period 2. To verify this latter statement, note that Xn + Yn

changes parity with each step. Like the simple symmetric random walk on Z,
we can only have W

(2)
n = (0, 0) if n is even. Our goal here is to show that the

simple symmetric random walk on Z
2 is recurrent. We have

Theorem 25.2. P [W (2)
2n = (0, 0)] = (P [W (1)

2n = 0])2, so W
(2)
n is recurrent.

Proof. Let u = ( 1
2 , 1

2 ) and v = ( 1
2 ,− 1

2 ). Then u + v = (1, 0), −u − v =
(−1, 0), u−v = (0, 1), and −u+v = (0,−1). So if A and B are independent with
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P [A = ±1] = P [B = ±1] = 1
2 , then Au + Bv is either (1, 0), (−1, 0), (0, 1), or

(0,−1) — each with probability 1
4 . Let (Ai : i ≥ 1) and (Bi : i ≥ 1) be

independent iid sequences with P [Ai = ±1] = P [Bi = ±1] = 1
2 . By the above

discussion,

W (2)
n = (0, 0) + (A1u + B1v) + · · ·+ (Anu + Bnv)

is a SSRW on Z
2 starting at the origin. But

W
(2)
2n = (0, 0) ⇐⇒ (A1 + · · ·+ A2n)u + (B1 + · · ·+ B2n)v = (0, 0)

⇐⇒ A1 + · · ·+ A2n = 0 and B1 + · · ·+ B2n = 0.

Where the second ‘ ⇐⇒ ’ holds because u and v are linearly independent vectors.
Now Wn = A1 + · · ·+ An and W ∗

n = B1 + · · ·+ Bn define independent SSRWs
on Z starting at 0 so

P [W (2)
2n = (0, 0)] = P [W2n = 0 and W ∗

2n = 0] = (P [W (1)
2n = 0])2.

As for the assertion of recurrence, from (24.13), we see that

P [W (2)
2n = (0, 0)] =

b2
n

n

where b2
n → b2 > 0 as n → ∞. Since

∑
n

1
n diverges, we get that W

(2)
n is

recurrent. �
This beautiful argument is surprisingly simple. Presently we offer a second

proof that is more computational in nature. It too is nice because at the heart
is an appealing combinatorial identity.

Alternative Proof. Fix some number n. Recall that Xi and Yi denote
the first and second coordinates of W

(2)
i , respectively, so W

(2)
i = (Xi, Yi).

With each step in the process, either Xi or Yi (but not both) change by ±1.
Let K (which is random) denote the number of steps i, with 0 ≤ i < 2n
where it is the first coordinate that changes, i.e. where Xi+1 = Xi ± 1 and
Yi+1 = Yi. Then 0 ≤ K ≤ 2n, specifically K ∼ Binomial

(
2n, 1

2

)
. If K is odd,

then X2n is odd and cannot be 0 — therefore W
(2)
2n cannot be (0,0). That is,

P [W (2)
2n = (0, 0) ∩ K = k] = 0 for odd k. Hence

P [W (2)
2n = (0, 0)] =

2n∑
k=0

P [W (2)
2n = (0, 0) ∩ K = k]

=
n∑

k=0

P [W (2)
2n = (0, 0) ∩ K = 2k].
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If 2k of the 2n steps involve the X coordinate then k of those steps must be to
the right (Xi+1 = Xi + 1) and k to the left to have X2n = 0. Similarly, n − k
of the 2n − 2k changes of the Y coordinate must be up (Yi+1 = Yi + 1), and
n − k down, to have Y2n = 0. To specify a walk of length 2n that begins and
ends at (0, 0) for which the X coordinate changes 2k times we must therefore:
(i) specify which 2k of the 2n steps involve a change of the X coordinate; (ii)
specify which k of those 2k steps involve a step to the right; and (iii) specify
which n−k of the remaining 2n−2k steps involve a step up. It follows that there
are

(
2n
2k

)(
2k
k

)(
2n−2k
n−k

)
such walks, each with probability

(
1
4

)2n =
(

1
2

)4n, yielding

P [W (2)
2n = (0, 0) ∩ K = 2k] =

(
2n

2k

)(
2k

k

)(
2n− 2k

n− k

)(
1
2

)4n

,

and thus

P [W (2)
2n = (0, 0)] =

(
1
2

)4n n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)(
2n

2k

)
.

Now
(
2k
k

)(
2n−2k
n−k

)(
2n
2k

)
=

(
2n
n

)(
n
k

)2 (work out both sides, they’re both (2n)!
[k!(n−k)!]2 ),

so

P [W (2)
2n = (0, 0)] =

(
1
2

)4n (
2n

n

) n∑
k=0

(
n

k

)2

=
(

1
2

)4n (
2n

n

)2

=

[(
1
2

)2n (
2n

n

)]2

= P [W (1)
2n = 0]2.

The second equality rests on the combinatoric identity
(
2n
n

)
=

∑n
k=0

(
n
k

)2. To
see this, suppose we wish to select n bottles of wine from among 2n bottles.
There are

(
2n
n

)
ways to do this. Now suppose n of the 2n bottles are red wine

and n are white wine, and let’s organize the count a different way. Let k denote
how many bottles of red we select, so we also select n−k bottles of white. There
are

(
n
k

)
ways to select the k reds and

(
n

n−k

)
ways to select the remaining n − k

whites. Hence, once k is selected, there are
(
n
k

) · ( n
n−k

)
=

(
n
k

)2 ways to select the
n wines in such a way that exactly k are red. Clearly we must have 0 ≤ k ≤ n,
so the number of ways to select the n wines is also given by

∑n
k=0

(
n
k

)2. We have
partitioned the count according to how many bottles of red are selected. �
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EXERCISES

1. In the alternative proof of Theorem 25.2 show that, given K = 2k, X2n and
Y2n are conditionally independent. That is, show that

P [X2n = x, Y2n = y |K = 2k]

= P [X2n = x |K = 2k] · P [Y2n = y |K = 2k].

2. For the two-dimensional random walk W
(2)
n = (Xn, Yn), show that the ex-

pected squared distance from the origin after n steps is E[X2
n + Y 2

n ] = n.

3. Use that W
(2)
n = (0, 0) =⇒ Xn = 0 and that the SSRW on Z is not positive

recurrent to argue that W
(2)
n is not positive recurrent.

4. Define a random walk, call it W̃ , on Z
2 as follows. W̃0 = (0, 0) and

W̃n+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W̃n + (1, 1) with probability 1

4

W̃n + (1,−1) with probability 1
4

W̃n + (−1, 1) with probability 1
4

W̃n + (−1,−1) with probability 1
4 ,

where the increment is independent of the process up to time n. Show that
P [W̃n = 0] = P [W (2)

n = 0].

• Discrete Harmonic Functions. Fix positive integer k and let

C = {(m,n) : m ∈ Z, n ∈ Z, |m| ≤ k, |n| ≤ k}.
Then C is a (2k+1)× (2k+1) square portion of Z

2 with the origin at its center.
Let ∂C denote the boundary of C (this is standard notation): ∂C = {(m,n) ∈
C : |m| = k or |n| = k}. The interior of C, denoted C◦, is everything else in C,
so C◦ = C \ ∂C. We show this here for k = 3:

•
•
•
•
•
•
•

•
•
•
•
•
•
• • • • • •

• • • • •
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

◦
◦
◦
◦
◦

(3, 3)

(−3,−3)

• = boundary◦ = interior.

A discrete harmonic function on C is a function f : C → R such that

for (m,n) ∈ C◦,

f(m,n) =
f(m,n + 1) + f(m,n− 1) + f(m + 1, n) + f(m− 1, n)

4
. (∗)
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In words, the value of f(m,n) at an interior point is the average of the values
at that point’s four nearest Z

2 neighbors.

5. Suppose g : ∂C → R is any function, so g assigns numbers to the boundary
points of C. Show that there is a discrete harmonic function f : C → R with
f(m,n) = g(m,n) for all points (m,n) ∈ ∂C. Hint: Let (W (2)

i (m,n) : i ≥ 0)
be a SSRW on Z

2 starting at (m,n) and let G denote the value of g() at the
location where this walk first hits ∂C.

6. Show that the harmonic function f(m,n) satisfying this boundary condition
is unique. Hint: follow a procedure similar to problem 1, §24.

7. For any function f(x, y), let Δxf(x, y) = f(x + 1, y) − f(x, y), and put
Δ2

xf(x, y) = Δxf(x, y) − Δxf(x − 1, y). Similarly define Δ2
yf(x, y), keeping x

fixed and varying y. Show that the discrete harmonic condition (∗) is equivalent
to Δ2

xf(m,n) + Δ2
yf(m,n) = 0. (A function f(x, y) defined on an open region

R ⊂ R
2 is harmonic if ∂2f

∂x2 + ∂2f
∂y2 = 0 at each point in the region.)

§26. Random Walks in Three Dimensions

Here we study the recurrence/transience of the simple symmetric random
walk in three dimensions. The state space for this walk is Z

3 = {(x, y, z) :
x ∈ Z, y ∈ Z, z ∈ Z}. We denote this walk by W

(3)
n = (Xn, Yn, Zn), n ≥ 0,

where W
(3)
0 = (0, 0, 0) and, for n ≥ 0,

W
(3)
n+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
(3)
n + (+1, 0, 0) with probability 1

6

W
(3)
n + (−1, 0, 0) with probability 1

6

W
(3)
n + (0, +1, 0) with probability 1

6

W
(3)
n + (0,−1, 0) with probability 1

6

W
(3)
n + (0, 0, +1) with probability 1

6

W
(3)
n + (0, 0,−1) with probability 1

6 ,

where the increment is independent of the process up to time n. We seek to
establish that:

Theorem 26.1. For some number D, P [W (3)
2n = (0, 0, 0)] ≤ D

n3/2 so W
(3)
n is

transient.

Remarks. Like the one and two dimensional cases, if n is odd, W
(3)
n cannot

be (0, 0, 0) because the parity of Xi + Yi + Zi changes with each step. The tran-
sience conclusion follows from the fact that

∑
n

1
n3/2 <∞ together with Theorem

20.5 or, if you wish, the Borel-Cantelli Lemma. One might expect, based on the
two dimensional case, that P [W (3)

2n = (0, 0, 0)] = (P [W (1)
2n = 0])3. This is not


