§25. Random Walks in Two Dimensions

Let \mathbb{Z}^2 denote all points in the Euclidean plane with integer coordinates. Specifically, $\mathbb{Z}^2 = \{(x,y) : x \in \mathbb{Z}, y \in \mathbb{Z}\}$. We seek to define a random walk on \mathbb{Z}^2 , which we will denote by $(W_n^{(2)} : n \geq 0)$. Here the superscript indicates the dimension of the process and we will use $W_n^{(1)}$ to denote a (one dimensional) simple symmetric random walk on \mathbb{Z} , formerly simply called W_n .

Each point $(x,y) \in \mathbb{Z}^2$ has four nearest neighbors, north, south, east, and west, that are a distance 1 from (x,y), namely: (x,y+1), (x,y-1), (x+1,y), and (x-1,y). We define a Markov chain $(W_n^{(2)}:n\geq 0)$ on state space \mathbb{Z}^2 as follows. Take $W_0^{(2)}=(0,0)$, so the process starts at the origin. Then, given $W_n^{(2)}=(x,y)$, $W_{n+1}^{(2)}$ is one of $W_n^{(2)}$'s four nearest neighbors — each with probability $\frac{1}{4}$. Stated differently,

$$W_{n+1}^{(2)} = \begin{cases} W_n^{(2)} + (+1,0) & \text{with probability } \frac{1}{4} \\ W_n^{(2)} + (-1,0) & \text{with probability } \frac{1}{4} \\ W_n^{(2)} + (0,+1) & \text{with probability } \frac{1}{4} \\ W_n^{(2)} + (0,-1) & \text{with probability } \frac{1}{4}, \end{cases}$$

where the increment is independent of the process up to time n. We will let X_n and Y_n denote the first and second coordinates of $W_n^{(2)}$, respectively, so $W_n^{(2)} = (X_n, Y_n)$. Figure 25.1 shows a realization of the first 10 steps of such a walk. Here $W_{10} = (-1, -1)$, so $X_{10} = Y_{10} = -1$ (the ' \circ ' in the figure).

Figure 25.1. An illustrative realization of $W_n^{(2)}$ for $0 \le n \le 10$.

This defines a simple symmetric random walk on \mathbb{Z}^2 . The state space \mathbb{Z}^2 is clearly irreducible under this process and, like the simple symmetric random walk on \mathbb{Z} , it has period 2. To verify this latter statement, note that $X_n + Y_n$ changes parity with each step. Like the simple symmetric random walk on \mathbb{Z} , we can only have $W_n^{(2)} = (0,0)$ if n is even. Our goal here is to show that the simple symmetric random walk on \mathbb{Z}^2 is recurrent. We have

Theorem 25.2.
$$P[W_{2n}^{(2)} = (0,0)] = (P[W_{2n}^{(1)} = 0])^2$$
, so $W_n^{(2)}$ is recurrent.
PROOF. Let $\mathbf{u} = (\frac{1}{2}, \frac{1}{2})$ and $\mathbf{v} = (\frac{1}{2}, -\frac{1}{2})$. Then $\mathbf{u} + \mathbf{v} = (1,0)$, $-\mathbf{u} - \mathbf{v} = (-1,0)$, $\mathbf{u} - \mathbf{v} = (0,1)$, and $-\mathbf{u} + \mathbf{v} = (0,-1)$. So if A and B are independent with

 $P[A=\pm 1]=P[B=\pm 1]=\frac{1}{2}$, then $A\mathbf{u}+B\mathbf{v}$ is either (1,0), (-1,0), (0,1), or (0,-1)— each with probability $\frac{1}{4}$. Let $(A_i:i\geq 1)$ and $(B_i:i\geq 1)$ be independent iid sequences with $P[A_i=\pm 1]=P[B_i=\pm 1]=\frac{1}{2}$. By the above discussion,

$$W_n^{(2)} = (0,0) + (A_1\mathbf{u} + B_1\mathbf{v}) + \dots + (A_n\mathbf{u} + B_n\mathbf{v})$$

is a SSRW on \mathbb{Z}^2 starting at the origin. But

$$W_{2n}^{(2)} = (0,0) \iff (A_1 + \dots + A_{2n})\mathbf{u} + (B_1 + \dots + B_{2n})\mathbf{v} = (0,0)$$

 $\iff A_1 + \dots + A_{2n} = 0 \text{ and } B_1 + \dots + B_{2n} = 0.$

Where the second ' \iff ' holds because **u** and **v** are linearly independent vectors. Now $W_n = A_1 + \cdots + A_n$ and $W_n^* = B_1 + \cdots + B_n$ define independent SSRWs on \mathbb{Z} starting at 0 so

$$P[W_{2n}^{(2)} = (0,0)] = P[W_{2n} = 0 \text{ and } W_{2n}^* = 0] = (P[W_{2n}^{(1)} = 0])^2.$$

As for the assertion of recurrence, from (24.13), we see that

$$P[W_{2n}^{(2)} = (0,0)] = \frac{b_n^2}{n}$$

where $b_n^2 \to b^2 > 0$ as $n \to \infty$. Since $\sum_n \frac{1}{n}$ diverges, we get that $W_n^{(2)}$ is recurrent. \square

This beautiful argument is surprisingly simple. Presently we offer a second proof that is more computational in nature. It too is nice because at the heart is an appealing combinatorial identity.

ALTERNATIVE PROOF. Fix some number n. Recall that X_i and Y_i denote the first and second coordinates of $W_i^{(2)}$, respectively, so $W_i^{(2)} = (X_i, Y_i)$. With each step in the process, either X_i or Y_i (but not both) change by ± 1 . Let K (which is random) denote the number of steps i, with $0 \le i < 2n$ where it is the first coordinate that changes, i.e. where $X_{i+1} = X_i \pm 1$ and $Y_{i+1} = Y_i$. Then $0 \le K \le 2n$, specifically $K \sim \operatorname{Binomial}\left(2n, \frac{1}{2}\right)$. If K is odd, then X_{2n} is odd and cannot be 0— therefore $W_{2n}^{(2)}$ cannot be (0,0). That is, $P[W_{2n}^{(2)} = (0,0) \cap K = k] = 0$ for odd k. Hence

$$P[W_{2n}^{(2)} = (0,0)] = \sum_{k=0}^{2n} P[W_{2n}^{(2)} = (0,0) \cap K = k]$$
$$= \sum_{k=0}^{n} P[W_{2n}^{(2)} = (0,0) \cap K = 2k].$$

If 2k of the 2n steps involve the X coordinate then k of those steps must be to the right $(X_{i+1} = X_i + 1)$ and k to the left to have $X_{2n} = 0$. Similarly, n - k of the 2n - 2k changes of the Y coordinate must be up $(Y_{i+1} = Y_i + 1)$, and n - k down, to have $Y_{2n} = 0$. To specify a walk of length 2n that begins and ends at (0,0) for which the X coordinate changes 2k times we must therefore: (i) specify which 2k of the 2n steps involve a change of the X coordinate; (ii) specify which k of those 2k steps involve a step to the right; and (iii) specify which n-k of the remaining 2n-2k steps involve a step up. It follows that there are $\binom{2n}{2k}\binom{2k}{k}\binom{2n-2k}{n-k}$ such walks, each with probability $\left(\frac{1}{4}\right)^{2n} = \left(\frac{1}{2}\right)^{4n}$, yielding

$$P[W_{2n}^{(2)} = (0,0) \cap K = 2k] = \binom{2n}{2k} \binom{2k}{k} \binom{2n-2k}{n-k} \left(\frac{1}{2}\right)^{4n},$$

and thus

$$P[W_{2n}^{(2)} = (0,0)] = \left(\frac{1}{2}\right)^{4n} \sum_{k=0}^{n} {2k \choose k} {2n-2k \choose n-k} {2n \choose 2k}.$$

Now $\binom{2k}{k}\binom{2n-2k}{n-k}\binom{2n}{2k} = \binom{2n}{n}\binom{n}{k}^2$ (work out both sides, they're both $\frac{(2n)!}{[k!(n-k)!]^2}$), so

$$P[W_{2n}^{(2)} = (0,0)] = \left(\frac{1}{2}\right)^{4n} {2n \choose n} \sum_{k=0}^{n} {n \choose k}^{2}$$

$$= \left(\frac{1}{2}\right)^{4n} {2n \choose n}^{2}$$

$$= \left[\left(\frac{1}{2}\right)^{2n} {2n \choose n}\right]^{2} = P[W_{2n}^{(1)} = 0]^{2}.$$

The second equality rests on the combinatoric identity $\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2$. To see this, suppose we wish to select n bottles of wine from among 2n bottles. There are $\binom{2n}{n}$ ways to do this. Now suppose n of the 2n bottles are red wine and n are white wine, and let's organize the count a different way. Let k denote how many bottles of red we select, so we also select n-k bottles of white. There are $\binom{n}{k}$ ways to select the k reds and $\binom{n}{n-k}$ ways to select the remaining n-k whites. Hence, once k is selected, there are $\binom{n}{k} \cdot \binom{n}{n-k} = \binom{n}{k}^2$ ways to select the n wines in such a way that exactly k are red. Clearly we must have $0 \le k \le n$, so the number of ways to select the n wines is also given by $\sum_{k=0}^{n} \binom{n}{k}^2$. We have partitioned the count according to how many bottles of red are selected. \square

EXERCISES

1. In the alternative proof of Theorem 25.2 show that, given $K=2k,\,X_{2n}$ and Y_{2n} are conditionally independent. That is, show that

$$P[X_{2n} = x, Y_{2n} = y \mid K = 2k]$$

$$= P[X_{2n} = x \mid K = 2k] \cdot P[Y_{2n} = y \mid K = 2k].$$

- **2.** For the two-dimensional random walk $W_n^{(2)} = (X_n, Y_n)$, show that the expected squared distance from the origin after n steps is $E[X_n^2 + Y_n^2] = n$.
- **3.** Use that $W_n^{(2)} = (0,0) \implies X_n = 0$ and that the SSRW on \mathbb{Z} is not positive recurrent to argue that $W_n^{(2)}$ is not positive recurrent.
- **4.** Define a random walk, call it \widetilde{W} , on \mathbb{Z}^2 as follows. $\widetilde{W}_0 = (0,0)$ and

$$\widetilde{W}_{n+1} \ = \ \begin{cases} \widetilde{W}_n + (1,1) & \text{with probability } \frac{1}{4} \\ \widetilde{W}_n + (1,-1) & \text{with probability } \frac{1}{4} \\ \widetilde{W}_n + (-1,1) & \text{with probability } \frac{1}{4} \\ \widetilde{W}_n + (-1,-1) & \text{with probability } \frac{1}{4}, \end{cases}$$

where the increment is independent of the process up to time n. Show that $P[\widetilde{W}_n = 0] = P[W_n^{(2)} = 0]$.

 \bullet Discrete Harmonic Functions. Fix positive integer k and let

$$C = \{(m, n) : m \in \mathbb{Z}, n \in \mathbb{Z}, |m| < k, |n| < k\}.$$

Then C is a $(2k+1) \times (2k+1)$ square portion of \mathbb{Z}^2 with the origin at its center. Let ∂C denote the boundary of C (this is standard notation): $\partial C = \{(m,n) \in C : |m| = k \text{ or } |n| = k\}$. The interior of C, denoted C° , is everything else in C, so $C^{\circ} = C \setminus \partial C$. We show this here for k = 3:

A discrete harmonic function on C is a function $f: C \to \mathbb{R}$ such that

for
$$(m,n) \in C^{\circ}$$
,

$$f(m,n) = \frac{f(m,n+1) + f(m,n-1) + f(m+1,n) + f(m-1,n)}{4}. \quad (*)$$

In words, the value of f(m,n) at an interior point is the average of the values at that point's four nearest \mathbb{Z}^2 neighbors.

- **5.** Suppose $g: \partial C \to \mathbb{R}$ is any function, so g assigns numbers to the boundary points of C. Show that there is a discrete harmonic function $f: C \to \mathbb{R}$ with f(m,n) = g(m,n) for all points $(m,n) \in \partial C$. Hint: Let $(W_i^{(2)}(m,n): i \geq 0)$ be a SSRW on \mathbb{Z}^2 starting at (m,n) and let G denote the value of g() at the location where this walk first hits ∂C .
- **6.** Show that the harmonic function f(m, n) satisfying this boundary condition is unique. Hint: follow a procedure similar to problem 1, §24.
- 7. For any function f(x,y), let $\Delta_x f(x,y) = f(x+1,y) f(x,y)$, and put $\Delta_x^2 f(x,y) = \Delta_x f(x,y) \Delta_x f(x-1,y)$. Similarly define $\Delta_y^2 f(x,y)$, keeping x fixed and varying y. Show that the discrete harmonic condition (*) is equivalent to $\Delta_x^2 f(m,n) + \Delta_y^2 f(m,n) = 0$. (A function f(x,y) defined on an open region $R \subset \mathbb{R}^2$ is harmonic if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ at each point in the region.)

§26. Random Walks in Three Dimensions

Here we study the recurrence/transience of the simple symmetric random walk in three dimensions. The state space for this walk is $\mathbb{Z}^3 = \{(x,y,z) : x \in \mathbb{Z}, y \in \mathbb{Z}, z \in \mathbb{Z}\}$. We denote this walk by $W_n^{(3)} = (X_n, Y_n, Z_n), n \geq 0$, where $W_0^{(3)} = (0,0,0)$ and, for $n \geq 0$,

$$W_{n+1}^{(3)} = \begin{cases} W_n^{(3)} + (+1,0,0) & \text{with probability } \frac{1}{6} \\ W_n^{(3)} + (-1,0,0) & \text{with probability } \frac{1}{6} \\ W_n^{(3)} + (0,+1,0) & \text{with probability } \frac{1}{6} \\ W_n^{(3)} + (0,-1,0) & \text{with probability } \frac{1}{6} \\ W_n^{(3)} + (0,0,+1) & \text{with probability } \frac{1}{6} \\ W_n^{(3)} + (0,0,-1) & \text{with probability } \frac{1}{6}, \end{cases}$$

where the increment is independent of the process up to time n. We seek to establish that:

Theorem 26.1. For some number D, $P[W_{2n}^{(3)} = (0,0,0)] \leq \frac{D}{n^{3/2}}$ so $W_n^{(3)}$ is transient.

REMARKS. Like the one and two dimensional cases, if n is odd, $W_n^{(3)}$ cannot be (0,0,0) because the parity of $X_i+Y_i+Z_i$ changes with each step. The transience conclusion follows from the fact that $\sum_n \frac{1}{n^{3/2}} < \infty$ together with Theorem 20.5 or, if you wish, the Borel-Cantelli Lemma. One might expect, based on the two dimensional case, that $P[W_{2n}^{(3)} = (0,0,0)] = (P[W_{2n}^{(1)} = 0])^3$. This is not