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2. Same for T = {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00}.

§38. Itô’s Formula for Brownian Motion

Here we develop an elementary version of Itô’s formula in the context of
Brownian motion. Suppose f(t, b) is a continuous function of two variables.
Then, as we have discussed, Xt = f(t, Bt) describes a new stochastic process with
continuous paths. For the discussion that follows to be rigorous, we impose at
this juncture some technical restrictions. For convenience, we restrict attention
to the Xt process on a finite time interval [0, T ]. Additionally, we require that:

(i) the partial derivatives ftt, ftb, fbbb all exist and are continuous;

(ii) for some h > 0, E
[
(fbb(t, Bt))

2
]
≤ h for all t ∈ [0, T ].

(38.1)

Condition (ii) is rather technical, but not terribly onerous. Presently we prove:

Theorem 38.2 (Itô’s Formula). If the function f(t, b) satisfies (38.1),
then on the interval [0, T ] the process Xt = f(t, Bt) has dynamics given by

dXt =
(

ft(t, Bt) +
1
2
fbb(t, Bt)

)
dt + fb(t, Bt)dBt.

Notational Remark. There is some room for notational confusion here,
as Xt denotes the value of the stochastic process X at time t while ft denotes
the partial derivative of f with respect to t. We will use capital letters to denote
stochastic processes and lower case letters to denote functions and real variables.
This should mitigate any confusion.

Example 38.3. In Example 37.8 we have f(t, b) = b2 − t, so ft(t, b) = −1,
fb(t, b) = 2b, and fbb(t, b) = 2. This gives

dXt =
(
− 1 +

1
2
· 2

)
dt + 2BtdBt = 2BtdBt.

Here the drift term (Mt in (37.3)) is zero — this is a zero drift process.

Proof of Theorem 38.2. For any Brownian path B let L = max{|Bt| : 0 ≤
t ≤ T}. Then the rectangle R(T,L) = {(t, b) : 0 ≤ t ≤ T and |b| ≤ L} contains
the path. Since f ’s derivatives in (38.1) are continuous they are bounded in
absolute value in this rectangle (see Figure 38.4). Letting C denote the least
such upper bound, we observe that C is a random variable as it depends on ω
through the path B that is associated with ω.
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Figure 38.4. f ’s derivatives are bounded by C in R(T,L).
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Fix 0 ≤ u < v ≤ T and let T = {ti} be a partition of [u, v]. Using standard
estimation techniques for functions of two variables (see §45), we get that

ΔXti
= f(ti+1, Bti+1)− f(ti, Bti

)

= ft(ti, Bti
)Δti + fb(ti, Bti

)ΔBti
+

1
2
fbb(ti, Bti)ΔB2

ti

+ Errori,

where |Errori| ≤ C · (Δt2i + Δti|ΔBti
| + |ΔBti

|3). Here the term ε(t, Δt) as
defined in (37.3) is given by

ε(ti, Δti) = ΔXti
−

[(
ft(ti, Bti

) +
1
2
fbb(ti, Bti

)
)

Δti + fb(ti, Bti
)ΔBti

]

=
1
2
fbb(ti, Bti)ΔB2

ti
− 1

2
fbb(ti, Bti)Δti + Errori. (38.5)

We will show that, as ||T || → 0,

∑
i

1
2
fbb(ti, Bti

)ΔB2
ti

p→
∫ v

u

1
2
fbb(t, Bt) dt, (38.6)

and
∑

i

|Errori| ≤ C ·
∑

i

(
Δt2i + Δti|ΔBti |+ |ΔBti |3

) p→ 0. (38.7)

Note that the right side of (38.6) is a perfectly legitimate Riemann integral,
as, for each ω, the integrand is a continuous function of t. If we combine (38.6)
with the fact that

∑
i

1
2
fbb(ti, Bti)Δti →

∫ v

u

1
2
fbb(t, Bt) dt as ||T || → 0,
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we see that∣∣∣∣∣
∑

i

1
2
fbb(ti, Bti)ΔB2

ti
−

∑
i

1
2
fbb(ti, Bti)Δti

∣∣∣∣∣
p→ 0 as ||T || → 0.

(Xm
p→ X, Ym

p→ X =⇒ |Xm − Ym|
p→ 0, see exercises.) This together with

(38.7) shows that
∑

i ε(ti, Δti)
p→ 0, as required (refer to (38.5)).

First we turn our attention to the error terms in (38.7). Note that
∑

i

Δti
2 ≤ ||T ||

∑
i

Δti = ||T || · (v − u) → 0, as ||T || → 0.

That was easy. As for the second error term,
∑

i

Δti|ΔBti
| ≤ max{|ΔBti

| : 0 ≤ i < n} ·
∑

i

Δti

= max{|ΔBti |} · (v − u),

so it will suffice to show that

max{|ΔBti |} → 0, as ||T || → 0. (38.8)

But Bt is a continuous function of t. Hence, on any closed and bounded interval
[u, v] it is uniformly continuous (see Appendix II). That is, for any ε > 0 there
is a δ > 0 such that |Bt − Bt′ | < ε whenever t, t′ ∈ [u, v] with |t − t′| < δ.
Note that δ = δ(ω) is random because it will depend on the Brownian path
B = B(ω). Now fix any ε > 0 and let δ > 0 correspond to that ε. Then
||T || < δ =⇒ Δti < δ =⇒ |Bti − Bti+1 | < ε. Because this holds for each
individual i, we see that ||T || < δ =⇒ max{|ΔBti |} < ε. This establishes
(38.8).

For the third error term, use Lemma 38.9 (stated below) as applied to Ht = 1
to get that

∑
i ΔB2

ti

p→ v − u as ||T || → 0. Then, as ||T || → 0,
∑

i

|ΔB3
ti
| ≤ max{|ΔBti

|} ·
∑

i

ΔB2
ti

p→ 0,

as Xm
p→ 0, Ym

p→ c =⇒ XmYm
p→ 0 (see exercises). Collecting these three

error terms yields that
∑

i

(
Δt2i + Δti|ΔBti

|+ |ΔBti
|3
) p→ 0,

as ||T || → 0. This is enough to get (38.7), for Yn
p→ 0 =⇒ XYn

p→ 0 (see, e.g.,
Theorem 8.6).

Now we turn our attention to establishing (38.6), which is the crux of the
matter. We have:
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Lemma 38.9. If the process Ht satisfies (36.1) and has bounded second mo-
ment for t ∈ [0, T ] then

n−1∑
i=0

HtiΔB2
ti

p→
∫ v

u

Ht dt as ||T || → 0.

Statement (38.6) is simply this lemma as applied to Ht = 1
2fbb(t, Bt), which

has bounded second moment for t ∈ [0, T ] by virtue of (38.1).

Proof of Lemma 38.9. For partition T = {t0, . . . , tn} of [u, v], let

ZT =
∑

i

Hti
ΔB2

ti
−

∑
i

Hti
Δti

=
∑

i

Hti
[ΔB2

ti
−Δti]

=
∑

i

HiMi,

where Hi = Hti
and Mi = ΔB2

ti
−Δti. We will show that ZT

p→ 0 as ||T || → 0.
Since

n−1∑
i=0

HtiΔti →
∫ v

u

Ht dt as ||T || → 0,

the lemma will follow (Xm − Ym
p→ 0, Ym

p→ Y =⇒ Xm
p→ Y , see exercises).

Note that this holds because the left side is a Riemann sum approximation of
the integral on the right side. (Again, the integrand is a continuous function of
t.) We will show that EZT = 0 and that VarZT → 0 as ||T || → 0. Then, by
Chebyshev’s inequality, P [|ZT | ≥ ε] ≤ Var ZT

ε2 → 0, establishing that ZT
p→ 0.

Now E[ΔBti ] = 0, so E[ΔB2
ti

] = Var ΔBti = Δti and EMi = 0. Fur-
thermore, Hi depends on Bt only through time ti while Mi depends on the
Brownian increment on [ti, ti+1], so Hi and Mi are independent and E[HiMi] =
EHi · EMi = 0. By linearity of expectation, EZT = 0. Regarding the variance,
if 0 ≤ i < j, then

E[HiMiHjMj ] = E[HiMiHj ] · E[Mj ]

= E[HiMiHj ] · 0 = 0 = E[HiMi] · E[HjMj ].

The first equality holds because HiMiHj depends on the Brownian path up to
time tj , while Mj depends on the Brownian increment over the interval [tj , tj+1]
— HiMiHj and Mj are therefore independent. We have that HiMi and HjMj

are uncorrelated if i �= j, so

VarZT =
∑

i

Var [HiMi] =
∑

i

E[(HiMi)2] =
∑

i

E[H2
i ]E[M2

i ]

≤ h
∑

i

Var [Mi],
(38.10)
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where h is the hypothesized bound for EH2
t . The second equality above holds

because HiMi is mean 0; the third because H2
i and M2

i are independent. The in-
equality uses that Mi is mean 0. Now Var [Mi] = Var [ΔB2

ti
−Δti] = Var [ΔB2

ti
],

and
ΔB2

ti
∼ (Normal (0, Δti))2 ∼ Δti(Normal (0, 1))2,

so
VarMi = Δt2i Var [(Normal (0, 1))2] = 2Δt2i ,

using that (Normal (0, 1))2 has the chi-squared distribution with 1 degree of
freedom which has variance 2. Then∑

i

Var [Mi] =
∑

i

2Δt2i ≤ 2||T || ·
∑

i

Δti = 2||T || · (v − u) → 0,

as ||T || → 0. Combining this with (38.10) gives that VarZT → 0 as ||T || → 0.
This concludes the proof of Lemma 38.9 and Theorem 38.2. �

Remark. Lemma 38.9 is sometimes informally paraphrased as “dB2 = dt.”

EXERCISES

• In problems 1 – 3, verify the assertions made in the proof of Theorem 38.2 and
Lemma 38.9.

1. Xm
p→ X, Ym

p→ X =⇒ |Xm − Ym|
p→ 0.

2. Xm
p→ 0, Ym

p→ c =⇒ XmYm
p→ 0.

3. Xm − Ym
p→ 0, Ym

p→ Y =⇒ Xm
p→ Y .

• In problems 4 – 7, compute the dynamics of Xt = f(t, b).

4. f(t, b) = b.

5. f(t, b) = tb.

6. f(t, b) = tb2.

7. f(t, b) = eb (geometric Brownian motion).

8. Determine a function g(t) so that f(t, b) = g(t)eb generates a zero drift
process.

§39. Application: The Black-Scholes PDE and Formula

Here we study a classic application of Itô’s formula to develop the Black-
Scholes formula which values a call option on an underlying stock. It is cus-
tomary in finance to model the evolution of a stock price as a random process
following geometric Brownian motion:

St = s0e
μt+σBt , (39.1)


