ELEMENTS OF STOCHASTIC PROCESSES: A COMPUTATIONAL APPROACH

C. Douglas Howard Baruch College City University of New York

> FE PRESS New York

ELEMENTS OF STOCHASTIC PROCESSES: A COMPUTATIONAL APPROACH

CONTENTS

Preface	v
Chapter I. Essentials of Probability	1
§1. Probability Spaces	1
§2. Random Variables and Expectation	7
§3. Moments, Variance, Covariance, and Correlation	12
§4. Jointly Distributed Random Variables	15
§5. IID Sequences of Random Variables	19
§6. The Unit Interval $\mathbf{\Omega} = (0, 1)$ as Outcome Space	21
§7. Constructing Stochastic Processes on Ω	25
Chapter II. Some Fundamental Limit Theorems	31
§8. Two Types of Convergence	31
§9. The Weak Law of Large Numbers	35
§10. The Strong Law of Large Numbers	38
§11. The Central Limit Theorem	43
§12. The Monotone Convergence Theorem	48
§13 [*] . Two More Limit Theorems for Expectation	51
§14 [*] . Recovering the Moments of X from $M_X(\theta)$	52
Chapter III. Markov Chains with Finitely Many States	55
§15. The Two-State System	55
§16. Markov Chains with More than Two States	60
§17. Irreducible and Ergodic Markov Chains	64
§18. Example: An Interacting Particle System	75
§19. A Strong Law for Ergodic Markov Chains	79
§20. Communication Classes and Their Properties	82
§21. When the Markov Chain is Periodic	88
§22. Ergodic Decomposition	95

x ELEMENTS OF STOCHASTIC PROCESSES

 Chapter IV. Random Walks §23. Preliminaries §24. Random Walks on Z §25. Random Walks in Two Dimensions §26. Random Walks in Three Dimensions §27. Stirling's Formula 	101 101 102 116 120 125
 Chapter V. Arrival Processes and Poisson Point Processes §28. A Motivating Example §29. The Homogeneous Poisson Process in One Dimension §30. The Inhomogeneous Poisson Process §31. When Inter-Arrival Times are IID but not Exponential 	129 129 132 140 148
 Chapter VI. Brownian Motion §32. Introduction §33. The "Bumpiness" of Brownian Motion §34. Recurrence §35*. The Lévy Construction of Brownian Motion 	155 155 158 166 169
 Chapter VII. A Glimpse of Stochastic Calculus §36. Introduction §37. Stochastic Differential and Integral Equations §38. Itô's Formula for Brownian Motion §39. Application: The Black-Scholes PDE and Formula §40. The Ornstein-Uhlenbeck Process §41. Application: Modeling the Index of Consumer Sentiment 	179 179 180 183 187 194 204
Appendix I. Some Common Distributions §42. Some Common Discrete Distributions §43. Some Common Continuous Distributions	211 211 216
Appendix II. Some Real Analysis §44. Completeness and Some Consequences §45. Basics of Estimation	219 219 225
Bibliography	231
Index	233